Skip to content
Analyzing Big Data with Twitter
A special UC Berkeley iSchool course
Analyzing Big Data with Twitter
  • Home
  • About
  • Projects
    • Berkeley Food Recommenders
    • Clustering Communities in the Twitter Network
    • FlickOh – Personalized Movie Ratings and Recommendations
    • Impactweets: New Techniques for filtering Interesting Tweets
    • ParaTweet: A Twitter Content Based Recommendation Engine
    • Pigskin: Visualizing Football Tweets
    • Sale Cloud
    • TweetStrap: Apriori Retweet Count Prediction
    • Twist: User Timeline Tweet Classifier
    • Twitter Product Referral Bot
    • TwitterGotchi
    • BandHype
  • Syllabus
    • Instructor Bios
    • Project Mentors’ Bios
  • Assignments
    • Assignment 1
    • Assignment 2
    • Assignment 3
    • Final Project Requirements
    • Mid-Project Report and Presentation
    • Final Project Deliverables
    • Grading and Grading Policies

Projects

  • BandHype
  • Detecting Communities in the Twitter Network
  • TwitterGotchi
  • FlickOh: Personalizing Movie Ratings and Recommendations
  • ImpactTweets: New Techniques for Filtering Interesting Tweets
  • Sale Cloud
  • Predicting ReTweet Reach of a Tweeter
  • Twist: User Tweet Timeline Classifier
  • Twitter Product Referral Bot
  • Twitter Professionalism Analysis Tool
  • Berkeley Food Recommenders
  • PigSkin: Visualizing Football Tweets
  • Archives

    • December 2012
    • November 2012
    • October 2012
    • September 2012
    • August 2012
  • Meta

    • Log in
Analyzing Big Data with Twitter
Proudly powered by WordPress.