

Twist:

User Timeline Tweets Classifier
By

Sonali Sharma

Priya Iyer

Vaidyanath Venkat

Project Report

Report presented towards the completion of the class project for INFO 290 Analyzing Big Data

with Twitter

Date: 12/10/2012.

Mentor:

Andy Schlaikjer

Instructor

Marti Hearst

1. Abstract

Social media plays a big role in our day-to day lives. Over the last few years, micro-blogging services like

Twitter have become a great source of information from friends, celebrities, organizations and a means for

building social networks. These services are being increasingly used for real-time information sharing,

news and recommendations.

This report describes the creation, implementation and evaluation of a classifier, trained using supervised

machine learning techniques, which takes tweets as input, and classifies them into a set of predefined

categories. These categories are Sports, Finance, Technology and Entertainment. In this report, we discuss

the goals of this project, the necessary data collected to train and test the classifier. We further evaluate

the options used; provide details of implementation and evaluation techniques used for this classifier. The

output of the classifier is shown with the help of a wen interface.

2. Project Goals

Currently twitter allows users to create custom lists based on user profiles. This is a personalized list

where the users classify Twitter profiles in one or more categories. E.g. @newyorktimes, @cnn,

@guardian etc. are usually classified under “News” List. Similarly, one would classify @SportsCenter,

@TwitterSports, @NBCSports, @SkySportsNews under “Sports” list. Generally, these lists are based on the

twitter handles and not on the text of the tweet per se. The goal of our application is to:

a) Analyze the tweets, process them to remove redundant information and then employ machine

learning techniques to automatically classify the tweets under one or more predefined categories

based on one or more features of the tweets.

b) Create a web interface for the users to login using their twitter account and view the tweets from their

home timeline classified under on these categories of Sports, Technology, Finance, Entertainment and

Others.

3. Project Strategy

We divided the project into phases. The tasks under each of the phases were divided amongst the team

members based on preferences and skill sets. The next step was to do a literature review to analyze

previous work and to identify the best practices. We then divided our project into logical phases.

Phase 1:

 Create an outline of the application, identify software needs, plan the application architecture

 Data Collection, data consisted of tweets from handles under Sports, Technology, Finance and

Entertainment categories on the “Who to Follow” page:

https://twitter.com/i/#!/who_to_follow/interests

 Text Mining: Creation of custom algorithms to mine the text from the tweets and remove noise

 Creation of training and test files in the classifier library specific format

 Creation of algorithms to train and test the classifier with metrics for evaluation

Phase 2:

 Measure effectiveness of the classifier using precision, recall and cross validation.

 Refine the classifier using more training set and features.

 Create the web interface running on a Flask server using Python script for users to view classified

tweets

 Code documentation and review

 Preparation of final project report and presentation.

4. Implementation

4.1 Overview

To create a classifier we collected over 100,000 tweets belonging to sports, technology, finance and

entertainment. The implementation steps were divided into backend (data collection, processing of

tweets and classifier module) and frontend (to show classified tweets).

4.2 Technologies Used

Tweepy

Tweepy is a Python library for accessing the Twitter API. We implemented the authorization and

streaming modules of the live tweets using this package.

Twitter 4j API V.1.0

The Twitter REST API methods allow developers to access core Twitter data. This includes update

timelines, status data, and user information. For the purpose of data collection we used Twitter 4j

API version 1.0, implemented in Java, to collect tweets from a list of users.

Python 2.7.3

Preprocessing of the tweets, which consisted of cleaning the tweets by removal of special

characters, spell checks, stemming, removal of stop words, tokenization, bigrams was done in

python 2.7.3. Spell checking and stop-words removal was implemented using the NLTK toolkit.

LIBLINEAR

The library used for creating different classifier models was LIBLINEAR for Python.

4.3 Data Collection

In order to train the classifier we collected over 25000 tweets from each of the four categories

using Twitter4j REST API V.1.1. To ensure that relevant tweets are collected, we got a list of the top

15-20 most influential users for each category from Twitter’s recommended “Who to Follow” list

(https://twitter.com/i/#!/who_to_follow/interests) as shown in Figure 1.

Figure 1. ‘Who To Follow’ suggestion lists on Twitter

 We collected over 2000 tweets per user under each category into four separate text files. List of

 selected users for each category is described in Appendix A.

https://twitter.com/i/%23!/who_to_follow/interests

 Note: In order to address the problem of rate limiting, tweets were collected in regular intervals as

 opposed to a one-time run. Paging was used which allows 200 tweets to be collected per page from

 each user.

4.4 Text Mining

Before using the Twitter data as training set, it was very important to pre-process the data to

extract meaningful information. Twitter data consists of lots noise, which must be removed.

Tweets are in an inconsistent format, they contain a lot of special characters, abbreviations, @ for

mentions, # for tags, misspelt words, URLs and exclamatory words. We identified the following

rules and built algorithms for each of these to clean and preprocess data in order to create a

relevant training set.

Rule#1: Take only English language words.

Rule#2: Remove all special characters except hashtags and URLs

Rule#3: Correct words containing repeated letters e.g. “sooooo good”, changed to “so good”.

Rule#4: Apply spell check on words using Norwick’s spell check algorithm

Rule#5: Remove stop words

Rule#6: Apply stemming to change the word to its root. Porter’s stemming algorithm was use for

this purpose.

Rule#7: Convert words to lower case.

Rule#8: Tokenize words using the whitespace and create bigrams.

We wrote methods in Python to execute the rules defined above and create a clean dataset for

training and testing purposes.

This is illustrated in Figure 2.

Figure 2: An illustration of the flow of Text Processing Module

4.5 Classifier

4.5.1 Rationale

 For the purposes of text classification, we made use of multiclass linear classifiers. From the

literature review, it was clear that in particular, the most common technique in practice has

been to build one-versus-rest classifiers (commonly referred to as ”one-versus-all'' or OVA

classification), and to choose the class which classifies the test datum with greatest margin.

Thus, our classifier had to classify into: Sports, Finance, Entertainment, Technology and Others.

For this purpose, we implemented four One vs. Rest classifiers (commonly referred to as

“one-versus-all” or OVA classification), one for each category.

Each tweet is passed through each of these classifiers. The output of each of these binary

classifiers would be whether the tweet belongs to the category that classifier is trained for. Thus,

after the tweet has passed through all the four classifiers, we will know the categories tweet

belongs to. If it doesn’t belong to any of the categories, it will be classified under

‘Others’.

We used the LIBLINEAR library for python to implement linear classifiers.

LIBLINEAR is a linear classifier for data with millions of instances and features.

It supports

 L2-regularized classifier

 L2-loss linear SVM, L1-loss linear SVM, and logistic regression (LR)

 L1-regularized classifiers

 L2-loss linear SVM and logistic regression (LR)

 L2-regularized support vector regression

 L2-loss linear SVR and L1-loss linear SVR.

4.5.2 Choice of the Classifier

The choice of the classifier was crucial. From the literature review, it was clear to us that the

two best machine learning techniques for text classification would be Logistic Regression and

SVM (Support Vector Machines). Once we narrowed down to the use of the library, the next

challenge for us was to determine the exact classifier that would be the most effective in

classifying tweets. We conducted an experiment to choose the best classifier type which is

explained in detail in the section 4.5.3.

4.5.3 Preparing the training set

 From the text processing module as discussed in Section 4.4, we created four different

 training sets for each of the four classifiers. We created a custom algorithm to convert each of

 the tweets from text into the format required by the LIBLINEAR library. Also, the training

 data was taken in a “.txt” file as described in the section 4.3

After pre-processing of data, it was stored into four separate text files.

Database vs. Text Files: After obtaining the training data from Twitter and pre-processing it,

there was a need to store the data in such a form that words could be assigned to a unique

index. We first used a lightweight database package called ‘sqlite3’ but soon found that storing

of words and tweets in a database was adding an extra overhead in retrieval of information and

was slowing down the process of creation of feature vectors and input file. For 10,000 tweets

containing on an average of 12 words it took almost 2 hours to read the data from the database,

create a term-document dictionary and then convert it into the format required by the

classifier.

Thus, for faster processing of tweets, we then switched to text files for storage of data and

created the input to the classifier by directly reading data from the text files. This eliminated

the need to maintain a separate database and reduced the processing time significantly. The

following files were used to create feature vector and input to the classifier:

Word Dictionary – Containing a list of unique unigrams and bigrams along with their index.

This is a global list of words for the training dataset. This is illustrated in Figure 3 below.

Column 1 represents the unique index of the word and column 2 represents the token.

Figure 3. Word dictionary containing a unique index for each of the words occurring in the

tweets present in the training data set

Tweet-Terms Dictionary – This contains category and tweet wise list of tokenized words and

bigrams. The file is divided into 4 columns.

Column1 - Category type (1- Sports, 2- Finance, 3- Entertainment, 4-

 Technology)

Column2 - Tweet ID; follows the same order as the occurrence of the

 tweets in the training set

Column3 - Word ID, mapped to the Word Dictionary shown in Figure 3.

Column4 – 1 depicting presence of the word in the tweet; used later for

 classifier input file creation

This is illustrated in Figure 4 shown below.

Figure 4: Tweet-Terms dictionary; maps the Tweet IDs to the index of the terms or words

occurring in any given tweet.

Features – Unigrams and bigrams were used as features. TF-IDF (term frequency- inverse

document frequency) was initially chosen as the weight of each of the features.

 : Cardinality of D, or the total number of documents in the corpus

 : Number of documents where the term appears

 Then, TF-IDF is calculated as

Twitter data set is not a traditional dataset as used in text classification. Since tweets are

limited to 140 characters, words that were present in tweets had the same TF-IDF value.

Moreover, the calculation of TF-IDF for 100,000 tweets was also a tedious process.

http://en.wikipedia.org/wiki/Cardinality

Hence, for faster and more efficient processing, we chose Boolean as the weight of the feature

where 1 represents the presence of the word in the tweet and 0 represents absence of the

word.

LIBLINEAR Input - Input to LIBLINEAR consisted of the feature representation of the selected

unigrams and bigrams. The training files were created in the following format:

<label> <index1>:<value1> <index2>:<value2> ...
<label> <index1>:<value1> <index2>:<value2> ...
.
.

<label> <index1>:<value1> <index2>:<value2> ...

Where,

<label> corresponds to category. For the tweets belonging to “Sports” present in the training

file for the Sports classifier, the <label> values were 1 and the rest of the tweets had a label

value of ‘-1’. Similarly, in each of the files for “Finance”, “Entertainment” and “Technology”, the

<label> values for tweet were 2, 3 and 4 respectively while the rest of the tweets in those files

had <label> values of -1.

<indexi> corresponds to the index of the ith word in the tweet. This index is retrieved from the

Tweet-Terms dictionary described in Figure 4. <value> is the Boolean value which corresponds

to 1 signifying that the word exists in the tweet.

Below is the illustration of the training file for the category, “Technology”.

Figure 5. Training File for the category “Technology”. Tweets belonging to this category have a

label of 4 before them; all other tweets have a label of -1.

4.5.4 Creating the model

In order to choose the best model out of the models listed above, we had to find out the type of

classifier that returned the best C-value for each of the classes. This understanding was gained

from the paper [FC] (see Bibliography).

LIBLINEAR supports the option of “-c i” in its “train(..)” method call. Thus, our objective was to

find the best value of “i”. We approached this problem by iterating each of the 8 types of

classifiers (Section 4.5.1) over 7 c-values ranging from 1000 to 0.001 and trained 4 separate

classifiers on 100,000 tweets from all four categories.

We ran 10-fold cross validation on each classifier and received precision and recall values.

Precision: is the fraction of retrieved instances that are relevant

Recall: is the fraction of relevant instances that are retrieved.

Based on the different values of precision and recall for different classifier types, the model

with type “L1- logistic regression” with a c-value of 5 exhibited the best performance since it

had the overall highest average precision and recall values of 0.89 and 0.88 respectively for

each of the categories.

4.6 Evaluation of the Classifier

In order to evaluate the classifier, we first created a new Twitter account called ‘TwistClassifier’

which follows a diverse set of Twitter users. Then, we streamed the home timeline data of this user

from Twitter. The data was stored in text file and preprocessed (refer section 4.2 for pre-

processing steps).

Word Dictionary - The unique words (tokens) and bigrams obtained from the test dataset were

stored in global word dictionary (4.5.2). Words were only added to the dictionary if they were not

already present.

Similar to the training file as shown in Figure 5., the test data tweets were all stored in another text

file. The text file input for the LIBLINEAR testing method was as shown below:

Figure 6. Illustration of the test input for the classifier.

Note that the category labels for the test data are all 0s. Each of the numbers before the “:” are the

indices of the word in the global word dictionary. 1 after the “:” indicated the presence of that word

in the tweet.

4.7 Output of the classifier

The tweets are passed through all these four classifiers are the output of the classifiers is

illustrated as shown below:

Sports: [-1.0, -

1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 1.0, -1.0, -1.0, -1.0, -1.0, 1.0, 1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0]

Finance: [-1.0, -1.0, -1.0, -1.0, -1.0, 2.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 2.0, -1.0, -1.0, -1.0, -1.0, -1.0, 2.0, 2.0, -1.0, -1.0, -1.0, -1.0, -1.0, 2.0, -1.0, -1.0,

-1.0, -1.0, -1.0, 2.0, -1.0, -1.0, -1.0, 2.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 2.0, -1.0, -1.0, -1.0, 2.0, 2.0]

Entertainment: [3.0, -1.0, -1.0, -1.0, -1.0, 3.0, -1.0, -1.0, -1.0, -1.0, 3.0, -1.0, -1.0, -1.0, -1.0, -1.0, 3.0, -1.0, -1.0, -1.0, -1.0, -1.0, 3.0, -1.0, -1.0, -1.0, -

1.0, -1.0, -1.0, 3.0, 3.0, -1.0, -1.0, -1.0, -1.0, 3.0, -1.0, -1.0, 3.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 3.0, -1.0, -1.0, -1.0, -1.0]

Technology: [-1.0, 4.0, -1.0, 4.0, 4.0, -1.0, 4.0, 4.0, 4.0, -1.0, -1.0, 4.0, -1.0, 4.0, 4.0, 4.0, -1.0, -1.0, -1.0, -1.0, 4.0, 4.0, -1.0, 4.0, -1.0, -1.0, 4.0, -1.0,

4.0, -1.0, -1.0, -1.0, 4.0, 4.0, -1.0, 4.0, 4.0, -1.0, 4.0, 4.0, 4.0, -1.0, -1.0, 4.0, -1.0, -1.0, 4.0, 4.0, -1.0, -1.0]

Figure 7. Output of each classifier for 50 tweets

This illustrates the outputs of four different classifiers for a set of 50 test tweets. Each of the labels

in the output list belongs to the tweets appearing in that order. It represents whether or not a

particular tweet belongs to that category. The lists above contain 50 values each for 50 tweets.

Thus, if the first tweet is related to Sports as well as Finance, then the first values in the respective

lists would be 1 and 2 respectively.

We then interpret these lists for each of the tweets and come up with the category of that tweet.

4.8 Summary of the flows

In summary, there are two basic flows in our application: to train and to classify the tweets. The

two figures below summarize, in an abstract manner, these two different flows.

Figure 8. Training Flow of the Application

P
h

as
e

1

Collect
Tweets for
Training
and Test

P
h

as
e

2

Process
Text

P
h

as
e

3

Create
training
and test
files

P
h

as
e

4

Train the
classifiers
using
training
files

P
h

as
e

5

Save the
model

P
h

as
e

6

Test the
classifier
using the
test files

P
h

as
e

7

Evaluate
the
classifier

P
h

as
e

8

Re-train if
needed

Figure 9. Live Flow of the Application

4.9 Front End

Front end offers a convenient way to the users to look at the predictions made by the classifier. In

order to show the result of the classifier we created a web page which takes the user handle as the

input and outputs the classified tweets on the user’s home timeline. Figure 10. shows the

screenshot of the running application.

P
h

as
e

 1

Collect
Tweets for
Test P

h
as

e
 2

Process
Text

P
h

as
e

3

Create test
files

P
h

as
e

 4

Pass the
tweets
through
the
modeled
classifiers

P
h

as
e

 5

Display
the
labeled
tweets on
the
interface

Figure 10. Illustration of the running application; each of the tweets are labeled

5. Coding & Documentation

Used Python for developing algorithms specified above.

Scripts are available at: https://github.com/priya-I/Twist

All the data collected for the purpose of training is available in the form of text files at:

https://github.com/priya-I/Twist/tree/master/flatfiles. These files containing the training data

set have been highlighted in the software documentation.

Instructions to install and run the code are available in README.txt

6. Conclusion

In this project, we attempted to present a way to create a classifier module using supervised machine

learning techniques. Using Logistic Regression, we were able to predict the category(ies) of a given

Tweet with an average precision-recall value of 0.89-0.88 and an accuracy of 92% on an average.

With respect to the short and sparse information transported with a single Tweet, we showed that it is

best to collect tweets only from the influential people on Twitter and not use Twitter public streams

for a positive training data set. Using pre-processing (stop word removal, spell check, stemming &

lemmatization) and bi-gram representation has a positive impact on the level of accuracy, but reduces

the processing time. Changing the cost parameter and type parameter for LIBLINEAR train module

helped us choose the best type of classifier for our classification.

https://github.com/priya-I/Twist
https://github.com/priya-I/Twist/tree/master/flatfiles

In order to create multiple labels for tweet and to categorize the tweet under ‘Others’ in case it does

not belong to any of the other predefined categories, we created four separate one versus rest

classifiers and for each classifier model we used the same training set but divided into positive and

negative examples for that category, thus ending up with four different training files for the same data

set. Increasing the size of the training dataset further added to improvement in the overall precision

and recall.

7. Project Milestones and Timeline

Date Milestone

Oct 28,

2012

Collect twitter dataset and install required APIs.

Nov 1,

2012

Given a set of sample tweets, algorithm should classify it into the first set of

categories.

Nov 10,

2012

Refining the algorithm by assessing the initial classification and identifying the

hidden topics.

Nov 13,

2012

First Deliverable

Nov 20,

2012

Creation of a high fidelity front end prototype supporting the application.

Machine learning will be in progress.

Nov 27,

2012

Refining the algorithm and finalizing the front end.

Dec 4,

2012

Creation of front end.

Dec 6,

2012

Final Deliverable

8. Percentage Contribution of Each Team Member

Phase 1

Tasks Vaidy Priya Sonali

Data Collection 35 30 35

Literature Review 33 33 33

Planning Applications

Architecture

25 50 25

Data Base Design 20 40 40

Text mining 60 20 20

Insertion into database 30 35 35

Code Optimization 40 40 20

Documentation 20 20 60

Meetings 33 33 33

Phase 2

Tasks Vaidy Priya Sonali

More Data Collection 20 20 60

Refinement to Text

Mining

50 30 20

Transforming data into

LIBLINEAR training and

test set

20 60 20

Initial training and

testing of the LIBLINEAR

model

20 60 20

Tuning parameters for

the model

20 45 35

Evaluation of the model 15 45 40

Twitter Website 30 20 50

Code Optimization 35 35 30

Code integration 40 40 20

Documentation 30 30 40

Meetings 33 33 33

9. Acknowledgment

We are extremely grateful to our mentor, Andy for saving our precious time with his extremely

insightful inputs. We owe him the timely completion of this project.

Also, we would like to thank our Professor, Marti, who made sure we were always on track with the

project and for setting us up with one of the most helpful mentors.

Appendix A : User accounts used for training

Sports Entertainment Finance Technology

SInow

SportsCenter

TwitterSports

NBCSports

SkySportsNews

YahooSports

SkySports

FOXSports

WarrenSapp

rudygay22

DaraTorres

FCBarcelona

nyjets

AroundTheHorn

womensprosoccer

London2012

Shaun_White

ChrisJohnson28

TroyAikman

JozyAltidore

paulpierce34

EW

Marvel

GoogleMandE

MSN_Entertain

tw_top_ent

starz_channel

SummitEnt

msnents

CNNshowbiz

TODAY_ent

ThinkFlash

THR

Variety

19News

digg_entertain

bbcentertain

CALEntertainmnt

celebcircuit

eonline

pulse_entertain

accesshollywood

WSJ

TheEconomist

mutualofomaha

YahooFinance

Forbes

daily_finance

GoogleFinSvcs

FinancialTimes

jnovogratz

zappos

brianmoran

jimcramer

Reuters_Biz

CNBC

BBCBusiness

karaswisher

cultofmac

sacca

ForbesTech

om

kevinrose

guardiantech

ericschmidt

pierre

mikeyk

woot

LaughingSquid

FCC

google

davemorin

waltmossberg

cshirky

gadgetlab

arstechnica

TheNextWeb

TEDchris

MichelleDBeadle

ErinAndrews

NCAA

SportsNation

KingJames

Olympics

robdyrdek

kingsthings

WarnerBrosEnt

wired_business

TechCrunch

RWW

Bibliography

[FC] Rong-En Fan Kai-Wei, Chang Cho-Jui Hsieh, Xiang-Rui Wang, Chih-Jen Li LIBLINEAR: A Library

for Large Linear Classification http://jmlr.csail.mit.edu/papers/volume9/fan08a/fan08a.pdf

 [H] Christopher Horn Analysis and Classification of Twitter messages http://know-

 center.tugraz.at/wp-content/uploads/2010/12/Master-Thesis-Christopher-Horn.pdf

 [CL] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin A practical guide to libSVM

 http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

 Websites

 www.wikipedia.org

 www.stackoverflow.com

 www.google.com

http://www.wikipedia.org/
http://www.stackoverflow.com/
http://www.google.com/

