Twist:

User Timeline Tweets Classifier

By
Sonali Sharma
Priya Iyer

Vaidyanath Venkat

Code Documentation
Date: 12/06/2012.
Mentor:

Andy Schlaikjer
Instructor

Marti Hearst

Project Structure

Following is the overall structure of our code. It is divided into various modules based
on the function.

Overall Structure

v [E7 Twist (~/Documents/Ischool/Twist)

» [IWebsite

» [0 flatfiles

» Enlp

» [53svmProc
__init__.py
app.py
"X code document.pdf
2] CodeDoument.txt
" outputCat
2] outputlabels

plotroc.py
» [l External Libraries

Data Collection

w [EF Twist (~/Documents/Ischool/Twist
w S DataCollection

[.settings
3 bin
[olddata
= src

4vVvyy

&) .classpath
[.project

£ sports.txt

Flat Files

[[5]! Project - I

) categories.txt

[2) entertainment.txt
2 finance.txt

&) pagelimit.txt

[£) README.txt

) technology.txt
[Z) twitter4j.properties

) collectTweets_java
[Z) collectTweetsbyCategory.java
£ hometimeline.java

» [Website
v [flatfiles
init__.py

| |2 entertain |
[£) entertain_xI|
| 2 finance |
|2) finance_xI
|£) outputCat
I [£) sports
[£) sports_xI
|£) stopwords.txt
I [£ technology I
|=] technology_xI|
[5) test.txt
| 2 testdocset |
[Z) testf.txt
I_%MI
[2) trainEnt.txt
[2 trainf.txt
[® trainFin.txt
=] trainSports.txt

=| trainTech.txt

v [EF Twist (~/Documents/Ischool/Twist)
» Bm DataCollection

[1 Raw InputData
[Processed Data
[——"1 IibLINEAR input formatted data

NLP and SVM modules

v &inlp
@) _init__.py
@] langid.py

@] spellcheck.py
@] TextProcessing.py
v 57 svmProc
@] _init__.py
@] SVMProcessing.py
@] _init__.py
€] app.py
"L code document.pdf
2] CodeDoument.txt
 outputCat
2] outputlabels
@) plotroc.py
» [l External Libraries

Modules

This section provides detailed explanation of various modules used for our application

Data Collection

We have used java with twitter4j package for data collection. We identified a list of
influential users in each category from the who to follow list and fetched the tweets from
those users.The twitter4j module allows us to access the REST API of twitter. Our module
fetches tweets from user timeline fetching one page at a time(200 tweets) We used

paging to evade the Rate limit on the REST api. The number of pages to be retrieved can

be configured using a configuration file(pagelimit.txt) which specifies the start and end
page to be retrieved. By default this is set to 5 pages.
Please refer to the README.txt file in the DataCollection module.

Website

This module contains the code and logic for the web interface that authenticate the user
and classifies the tweets.

Flask is a python framework that is used to create web applications effectively using
python. The basic structure of flask is to create an application file (python) that starts
the server and details the routing logic and the corresponding html files to be rendered.
These HTML files are saved in a seperate folder called as “Templates” and the necessary
java script and style sheet files are in the “Static” folder.

For the authentication, we have used the FlaskOAuth library that has the basic features
required to connect to twitter's authentication module and retrieve the authentication
key.

Once the user is authenticated, and the user authorizes our app to access their
tweets, this authentication code has to be saved in the database so that the same user is
not required to authenticate every time. Instead of a database, we have opted to save
the information in the app servers session memory and then reuse it throughout the
session.

We specify the callback wurl for redirection after the authentication as
localhost:5000/tweet. We can see the corresponding code for this module in the
app.route('tweet') section of the code.

In Flask, the routing logic is specified by defining methods for each route and identifying

them with the app.route() decorator. For example
app.route('/') # specifies the root path (http://localhost:5000)
def get():

#code for get

The functionalities in this module include the following

1. Authenticate the app and connect to twitter API , Use the Oauth module to create a

twitter authentication object.

2. Redirect to the twtter Oauth page and get the authorization token for the user

3. Save the users credentials in session so that once authorized the app can use the

users details repeatedly

4. Redirect to the callback url (app.route('tweet'))

5. Fetch user time line and select all

authenticating user

tweets which are not posted by the

6. Classify the tweets and show them on the interface

App.py

This is the entry module, which is used to run the application. It enables us to either

trains or classify. We used it for our own purpose of training and testing the classifier. We

use option 1 to train the classifier and option 2 to test the classifier. These choices call

one of the methods defined below:

Method

Description

def classify(flag=None):

This methods calls a series of methods to
test the classier. It starts with calling
module for text processing , storing files

data in data structure, create test file.

def train():

This method calleD a series of other
methods to do the following:

Text processing

Store file data in data structure

Create train file

Train libLINEAR

NLP

All the text processing code is contained in this module.

TextProcessing.py
This is the interface that is called during the trainign and classification. From here

the calls to the spell check module is made

. Generate Unigrams

. Filter punctuations.

. Generate bigrams

1
2
3. Reduce strings. spell correct, stem
4
5. Stop words removal

6

Language Identification

Method Description

Process(flow) This method processes a tweeet file and generates the
word index and other necessary set of files required for
training and for the actual classification.

removepunctuations(unigrams) Takes in a list of words and removes all words that
adoesnt satisfy the criteira which includes

1. No punctuations excpet for ' - and #

2. No urls.

Spell check.py

This contains the logic needed to implement the Norvig's spell check and other text

cleaning.

1. Determine Part of speech and return all proper nouns without any check
2. Detemrine if any word contains the same letter more than three times

consecutively (ex : cuuuuttteee)

3. Reduce such strings to their normal spelling.

4. For all words, compare with NLTK's dictionary and run spell check if needed.

Spell check:

1. For each word, split the word into 2 at all possible positions. - Ex -> hell is
split as (h,ell), (he,ll), (hel,l), (hell,) etc

2. This becomes the input for the remaining steps

3. For each pair in the list we do the following

a. Add a new letter from a though z at every possible position. So 'hell'

yields ahell,bhell...zhell, haell,hbell..hzell etc.

b. Edit each letter and substitute that with a through z. Ex, 'hell' yields
aell,bell,...zell, hall,hbll..hzll etc..

c.Delete each letter. so hell becomes, ell, hll, and hel etc.

d. swap every pair of letters. For ex -> hell yields ehll, hlel, hell etc.

4. Create a set of distinct suggestions after these 4 operations.

5. Filter out all invalid words like 'aell'.

6. returns the final list.

Method

Description

def spellcheck(unigram):

Takes a word as input and runs a spell check on the
word

def findSuggestions(word):

This method contains the core logic for spell check.
Finds suggestions and returns the list back

split(word)

Splits a word into parts (hell > (h,ell) etc.)

deleteletters(subStrings)

Deletes individual letters (hell > ell, hll etc)

swapletters(subStrings)

Swaps two consecutive letters (hell = hlel, ehll etc)

editandInsertLetters(subStrings)

Edits each letter and replaces with alphaberts from a-z,
inserts letters from a-z in all possible positions (hell >
aell,bell,.. haell,hbell etc)

LangId.py
This contains the logic as suggested by Misja Hoebe to use nltks trigram sets to detect

language

1. NItk has trigram sets for many languages with their wieghts in their corpus
2. From the corpus load the weights for english, french spanish
3. From the tweets, genrate trigrams and their frequencies.

4. This is then compared with the nltk corpus for a language match.

Method Description

LangDetect(object) Entry point that works on the current word that
invoked it and returns a predicted language

def detect(self, text): Has the core logic to detect the language

def get_word_trigrams(self, match): Get trigram matches from nltk corpus

def get trigram_weight(self, line): Gets the weight of the trigram fom the corpus

def read_trigram_block(self, stream): fetches the nltk corpus and reads blocks of trigrams

and gets the weight of each trigram

SVM

This directory contains the ML code required to classify the tweets.

SVMProcessinsg.py
Contains the core logic that trains and creates the model for classification, classifies the

tweets and finally calculates metrics for the classification.

1. Loads the tweets into a global cache. This contains the tweet and word ids for all
tweets in the set.
2. Creates different models by varying the cost and other parameters and trains a set of

tweets.

3. Calculates the metrics for each model by computing the precision and recall values and

decides on the apt model to be used.

4. Once the model is decided, the tweets can be classifed using the model.

5. Liblinear package is used to train the machine.

def cacheTweetsInList(maxWords, maxTweets,flow):

This method reads the preprocessed training set
data/test set data (based on whether we are training or
testing) then stores it together in a data structure which

is then used in the rest of the code.

def createTrainFile(docwords,docCatlds,maxTweets):

This creates an input file in the format of the liblinear

input to train the classifier.

def createTestFile(docwords,docCatlds,maxTweets):

This creates an input file in the format of the liblinear

input to test the classifier.

def trainlibLinear():

This modules accepts a training data in the format
discussed above and calls the following two methods of
liblinear library:

1) train(labels,features,str(options)) — This method trains
the classifier by taking the labels and features from the
input file and of options for cost and type (as discuused
in report). The output is a classifier.

2) predict(labels, features, m1) — This gives the methods
was used to get the predicted values based on the
classifier created using train and returns the predicted

labels, features and accuracy measure.

def testSVM(flag=None):

This module accepts the test file in the liblinear format,
passes it to the predict() method of liblinear library for
each of the 4 classifiers and gets the predicted labels for

the test set from al 4 models in sepaparte lists

def svmOutput():

This reads the list output (which is a set of 4 labels for
each tweet) from the previous step then determines the

final category of the tweet.

