
INFO 209 - HW 1

Eloi Pereira

September 14, 2012

1 Learn the tutorial

1.1

The DISTINCT keyword is used to eliminate duplicates in data. In this partic-
ular case the duplicates may arise due to the fact that the NGramGenerator
generates all ngrams of size 1 and 2. The concatenation of two ngrams of size
1 may create another ngram of size 2 which may lead to duplicate ngrams.

1.2

The command GROUP A by f groups the tuples of relation A according to
the specification f. It creats a partition of A where the first field is named
group and contains the values in which the grouping has been performed.
The second field are bags of records that meet the grouping specification.

In the example hour frequency1=GROUP ngramed2 BY (ngram,hour);,
the first field of hour frequency1 contains tuples (ngram,hour) where
ngram is a n-gram and hour is the hour, and the second field contains the
bags for each pair (ngram,hour).

1.3

The operator FLATTEN flattens data structures removing “nesting”. The
operator is polymorphic since it can be applied to tuples and bags. The
semantics of applying FLATTEN to tuples or bags is quite different so one
must use it with care.

The example hour frequency2 = FOREACH hour frequency1 GENERATE
flatten($0), COUNT($1) as count; applies FLATTEN to tuples of the kind
(ngram,hour) since it is flattening the first column ($0). Thus, flatten($0)
flattens the keys of the group with the result of COUNT($1) which counts

1

the number of elements in each bag of each group. The result is a tuple of
the kind (ngram,hour,count).

1.4

The command uniq frequency1 = GROUP hour frequency2 BY group::ngram;
is taking the record of tuples hour frequency2 and group them by the
ngram, producing tuples of the kind (ngram, {(ngram,hour,count)}) where
the first field is the key of the group.

2 Compute overall query log statistics

For each question, it is presented the pig code with some comments on
the reasoning behind the implementation. Together with this report it is
provided a pig file named hw1.pig containing all the code in this report.
We also provide all the results in folders named hwa where a is the problem
number.

REGISTER ./tutorial.jar;

raw = LOAD ’excite-small.log’ USING PigStorage(’\t’) AS (user, time, query);

2.a

-- question 2.a: The total number of query records

-- group all the records and count the elements in the group

allGrouped = GROUP raw ALL;

count = FOREACH allGrouped GENERATE COUNT(raw);

STORE count INTO ’Hw2a’ USING PigStorage();

-- answer (4501)

2.b

-- question 2.b: The maximum query length in words

-- tokenize the queries, count tokens in each query, group them all and take the maximum

removeEmpty = FILTER raw BY org.apache.pig.tutorial.NonURLDetector(query);

withTokens = FOREACH removeEmpty GENERATE TOKENIZE(query) as tokens;

countTokens = FOREACH withTokens GENERATE COUNT(tokens) as numTokens;

groupedTokens = GROUP countTokens ALL;

maxTokens = FOREACH groupedTokens GENERATE MAX($1);

STORE maxTokens INTO ’Hw2b’ USING PigStorage();

-- answer (14)

2.c

-- question 2.c: The average query length in words

-- same as per 2.b except that we take the average instead of the maximum

avgTokens = FOREACH groupedTokens GENERATE AVG($1);

2

STORE avgTokens INTO ’Hw2c’ USING PigStorage();

-- answer (2.445388974755281)

2.d

-- question 2.d: The total number of unique users

-- group by users, take the keys of the groups, group them all, and count them

usersGroup = GROUP raw BY user;

listUsers = FOREACH usersGroup GENERATE group;

listGrouped = GROUP listUsers ALL;

countUsers = FOREACH listGrouped GENERATE COUNT(listUsers);

STORE countUsers INTO ’Hw2d’ USING PigStorage();

-- answer (891)

2.e

-- question 2.e: The average number of query records per user

-- for each users group count their bags, group them all, and take the average

usersNumQueries = FOREACH usersGroup GENERATE COUNT(raw);

usersNumQueriesGroupAll = GROUP usersNumQueries ALL;

avgUsersNumQueries = FOREACH usersNumQueriesGroupAll GENERATE AVG($1);

STORE avgUsersNumQueries INTO ’Hw2e’ USING PigStorage();

-- answer (5.051627384960718)

2.f

-- question 2.f: What percent of query records contain queries with Boolean operators (AND,OR,NOT,or+)

-- use regexp to filter queries (previously lower cased), count them and calculate the percentage

lowerCase = FOREACH removeEmpty GENERATE user, time, LOWER(query) as query;

withBool = FILTER lowerCase BY query matches ’(.*(((and)|(or)|(not)|(\u002b))).*)’;

withBoolDist = DISTINCT withBool;

groupWithBoolAll = GROUP withBoolDist ALL;

countBool = FOREACH groupWithBoolAll GENERATE COUNT(withBoolDist);

pair = CROSS countBool, count;

percentageBool = FOREACH pair GENERATE (double)$0/(double)$1*100;

STORE percentageBool INTO ’Hw2f’ USING PigStorage();

-- answer (6.2208)

2.g

-- question 2.g: The 10 longest distinct queries

-- generate tuples of queries and their size, group them all, take the top 10

queriesAndSize = FOREACH removeEmpty GENERATE query, SIZE(query) as querySize;

queriesAndSize2 = DISTINCT queriesAndSize;

grp = GROUP queriesAndSize2 ALL;

top10 = FOREACH grp {

sorted = order queriesAndSize2 by querySize desc;

top = limit sorted 10;

generate group, flatten(top);

};

STORE top10 INTO ’Hw2g’ USING PigStorage();

-- answer:

-- (all,alanta,georgia/contractors independent excavation contractor excavating subcontractors

3

-- construction earthwork bidding ,118)

-- (all,alanta,georgia/contractors independent excavation contractor excavating subcontractors

-- construction earthwork ,110)

-- (all,alanta,georgia/contractors independent excavation contractor excavating subcontractors

-- construction ,100)

-- (all,alanta,georgia/contractors independent excavation contractor excavating subcontractors ,87)

-- (all,taper optic tapers fiber fibre waveguide optics waveguides cladding optical photonics ,86)

-- (all,iron and steel +oil and gas pipelines +valves +flanges +russia +ukraine,71)

-- (all,clow piping ductile supply awwa hydrants valves couplings fittings ,67)

-- (all,blues guitar "stevie ray vaughn" vaughan songs interviews pictures ,67)

-- (all,stockings panties exhibitionist girlfriends housewives schoolgirl ,66)

-- (all,accoustic guitars guild guitar stringed instrument instruments ,63)

2.h

-- question 2.h: The 10 most frequently occurring queries

-- group queries by query, count the number of queries inside each bag, group them all and take the top 10

queries = FOREACH removeEmpty GENERATE query;

queriesGrp = GROUP queries BY query;

queriesCount = FOREACH queriesGrp GENERATE group, COUNT(queries) as freq;

grp2 = GROUP queriesCount ALL;

top10_freq = FOREACH grp2 {

sorted2 = order queriesCount by freq desc;

top_freq = limit sorted2 10;

generate group, flatten(top_freq);

};

STORE top10_freq INTO ’Hw2h’ USING PigStorage();

-- answer:

-- (all,maytag,41)

-- (all,vanderheiden,27)

-- (all,change bowel habits,24)

-- (all,en vogue,23)

-- (all,running shoes,22)

-- (all,pregnant,20)

-- (all,ebony divas black,19)

-- (all,yahoo chat,16)

-- (all,the byker wall,16)

-- (all,jarrow,16)

3 Compute user session information

This question is not mandatory.

4 Combine with another data set

4.a

-- question 4.a: Find queries with references to US zip codes

-- use regexp to filter matches with US Postal zip. the regexp takes 0 or more characters,

-- followed by 5 digits and an optional dash with more 4 digits and finished again with

-- 0 or more characters.

4

distQueries = DISTINCT queries;

withZip = FILTER distQueries BY query matches ’.*(\\d{5}(-\\d{4})?).*’;

STORE withZip INTO ’Hw4a’ USING PigStorage();

-- answer:

-- (tv AND 90210)

-- (beverly hills 90210)

-- ("beverly hills 90210")

-- ("beverley hills 90210")

4.b

-- question 4.b: Find queries with references to place names

-- load data for location names, create records of token-query pairs, join the places names with the

-- token-query pairs. Take the queries and save.

rawWorld = LOAD ’dataen.txt’ USING PigStorage(’\t’) AS (uid: int, nameEn: chararray, nameAlt: chararray,

nameOrig: chararray, type: chararray, pop: int, lat: int, lon: int, parenCtry: chararray, parnAdm1: chararray,

parenAdm2: chararray, parenAdm3: chararray);

worldNames = FOREACH rawWorld GENERATE LOWER(nameEn) as nameEn;

worldNamesSample = SAMPLE worldNames 0.01;

tokenQueryPairs = FOREACH lowerCase GENERATE FLATTEN(TOKENIZE(query)) as tokens, query;

tokenQueryPairs2 = DISTINCT tokenQueryPairs;

worldNameTokenQuery = JOIN worldNames BY nameEn, tokenQueryPairs2 BY tokens;

worldNameTokenQuery2 = DISTINCT worldNameTokenQuery;

queriesWithPlaces = FOREACH worldNameTokenQuery2 GENERATE query;

STORE queriesWithPlaces INTO ’Hw4b’ USING PigStorage();

-- answer: too large to include in the report

4.c

-- question 4.c: Find other indicators of geographic locations

-- look for references of addresses since they are probably associated with

-- a location (except if it is an email)

lowerDistQueries = FOREACH distQueries GENERATE LOWER(query) as query;

withAddr = FILTER lowerDistQueries BY query matches ’.*addr.*’;

withAddrNoEmail = FILTER withAddr BY query matches ’^(?:(?!email).)*$’;

STORE withAddrNoEmail INTO ’Hw4c1’ USING PigStorage();

-- result:

-- (business addressess)

-- (business addressess businesses)

-- (business addressess businesses companies)

-- (crime stoppers denver colo. address phone number)

-- (business addressess businesses companies directories)

-- The result shows 1 positive and 4 false positives

-- look for weather references. usually associated with a place

withWeather = FILTER lowerDistQueries BY query matches ’.*weather.*’;

-- results: no matches

-- look for school(s)/college(s)/university(ies) references

withSchool = FILTER lowerDistQueries BY query matches ’.*((school)|(universit)|(college)).*’;

STORE withSchool INTO ’Hw4c2’ USING PigStorage();

-- result: 32 matches, 25 positives, 7 false positives

5

4.d

-- question 4.d: Further improve on (b) by doing something clever about ambiguous place names.

-- Exclude odd location names that increase a lot the false positives.

-- For example, there is a commune in the Burkina Faso named "To".

worldNamesRemoveSome = FILTER worldNames BY NOT nameEn matches ’((to)|(at)|(by)|(da)|(di)|(ii)|(of))’;

worldNameTokenQuery3 = JOIN worldNamesRemoveSome BY nameEn, tokenQueryPairs2 BY tokens;

worldNameTokenQuery4 = DISTINCT worldNameTokenQuery3;

queriesWithPlaces2 = FOREACH worldNameTokenQuery4 GENERATE query;

STORE queriesWithPlaces2 INTO ’Hw4d’ USING PigStorage();

-- result: too large to include on the report.

6

