This lab presented unique challenges that I hadn’t met in earlier assignments. Because of the servo motor’s limited range of movement, I had to find a way to distribute weight in such a way that would encourage the motor to move forward. I researched how bugs and other animals move and the only animals that move in side-to-side fashions (like the servo motor) are sea creatures. That wouldn’t work for this project. I ultimately came up with a creature of the future whose feet are made of tack glides for furniture, a paper towel roll, a chip clip, and a plastic beam and hairclip to help distribute the weight. The creature of the future moves by turning the potentiometer left and right.
Components:
- 1 Arduino board
- 1 Breadboard
- Jumper wires
- 1 potentiometer
- 1 servo motor
- 1 USB cable
- 2 tack glides for furniture
- several hairclips
- 1 chip clip
- 1 paper towel roll
- Duct tape
- small plastic beam
- Pipe cleaners to create a Quidditch hoop to tie this back to Harry Potter.
Code:
/* * Servo with Potentiometer control * Theory and Practice of Tangible User Interfaces * October 11 2007 */ int servoPin = 7; // Control pin for servo motor int potPin = 0; // select the input pin for the potentiometer int pulseWidth = 0; // Amount to pulse the servo long lastPulse = 0; // the time in millisecs of the last pulse int refreshTime = 20; // the time in millisecs needed in between pulses int val; // variable used to store data from potentiometer int minPulse = 500; // minimum pulse width void setup() { pinMode(servoPin, OUTPUT); // Set servo pin as an output pin pulseWidth = minPulse; // Set the motor position to the minimum Serial.begin(9600); // connect to the serial port Serial.println("servo_serial_better ready"); } void loop() { val = analogRead(potPin); // read the value from the sensor, between 0 - 1024 if (val > 0 && val <= 999 ) { pulseWidth = val*2 + minPulse; // convert angle to microseconds Serial.print("moving servo to "); Serial.println(pulseWidth,DEC); } updateServo(); // update servo position } // called every loop(). void updateServo() { // pulse the servo again if the refresh time (20 ms) has passed: if (millis() - lastPulse >= refreshTime) { digitalWrite(servoPin, HIGH); // Turn the motor on delayMicroseconds(pulseWidth); // Length of the pulse sets the motor position digitalWrite(servoPin, LOW); // Turn the motor off lastPulse = millis(); // save the time of the last pulse } }