
i206	
 Spring	
 2013:	
 Assignment	
 6	

	

Name_____________________________	

Question	
 1:	
 Practice	
 with	
 Concepts	
 from	
 Class	

	

(a) (0.5 points) You have a queue of names. Draw what the queue looks like after the following
sequence of operations:

enqueue(Alice),	
 enqueue(Bob),	
 enqueue(Carol),	
 enqueue(Dave),	
 dequeue(),	

dequeue(),	
 enqueue(Erin),	
 dequeue(),	
 enqueue(Fred).

(b) (0.5 points) You instantiated a new binary search tree and inserted elements into the tree in
the following order: 12, 3, 1, 30, 4, 5. Draw the state of the tree at the end of the insertions.

(c) (0.5 points) What is the height of the tree in part (b)?

(d) (0.5 points) You instantiated a new heap data structure and inserted elements into the heap in
the following order: 12, 3, 1, 30, 4, 5. Draw the state of the heap at the end of the insertions.

(e) (1 point) Assume you have a hash table whose hash function h(key) = key mod 11 where key
is an integer. Assuming a hash table of size 11 and a collision system that uses linked lists has
chains in the manner described in class, draw a picture of what the hash table looks like after the
following series of (key,value) pairs have been entered into the table:

3:	
 “cat”,	
 5:	
 “dog”,	
 30:	
 “fish”,	
 14:	
 “frog”,	
 10:	
 “cow”,	
 	
 25:	
 “ape”,	
 36:	
 “goat”,	
 100:	
 “horse”	

(f) [1 points] Implement the hash table described in (e) using an array for the main part of the
table and lists for the chains. Assume only integers are used as keys. You should support the
operations of insert and lookup (don’t worry about delete). Insert in the items shown.

Question	
 2:	
 Practice	
 with	
 Trees:	
 Coding	
 XML	

	

In i202, you learned a lot about XML. XML is a hierarchical, or tree-like structure. In this
assignment, we will make use of one of the several XML packages that are included with the
latest version of python. We will use this package to read in a simple XML file into a tree
structure and then perform some operations on this structure. The intention is for you to learn a
bit more about trees and to gain the beginnings of a useful skill, that of being able to automatically
process XML. We’ll use a shortened version of the wine.xml file that you saw with the facetmap
assignment in i202, called wineabbrev.xml .

The package we will use is one of the more straightforward ones, and does a lot of the work for
you. It is called ElementTree, and you load it in as follows:

from	
 xml.etree	
 import	
 ElementTree	

i206	
 Spring	
 2013:	
 Assignment	
 6	

	

In the reference page below, you will need to acquaint yourself with sections 9.11.1 and 9.11.2:
http://docs.python.org/release/3.1.3/library/xml.etree.elementtree.html

ElementTree represents XML in a tree structure consisting of objects of type Element. Each
Element represents an XML element and so contains the following attributes, assuming you have
an instance of an Element called node:

• The value of the XML tag as a string (called tag, access with node.tag)
• The value of the XML text as a string (called text, access with node.text)
• The XML attributes, stored as a dictionary (called attrib, access with node.attrib)
• The trailing text of the XML element, as as string (called tail, accss with node.tail)
• A list of Elements, which is a list of type Element. You access these by calling the

node.getchildren() function.

Note that like most tree representations, the data structure is recursive, in that the children are
defined in terms of the object type Element. Note also that XML trees are usually not sorted, so
there is no sort order for this data structure.

The one tricky part is that at the top level the tree is of type ElementTree, which has unique
functions such as parse(), but that it consists of objects of type Element. To get the first Element,
you call the getroot() function. Each child is of type Element, but stored in a list of children.

Something else to know is the notion of a “path” when searching the XML tree. If the hierarchy of
tags consists of A>B>C, you can’t find item C just by looking for “C”. You have to specify the
entire path using slash notation, as in “A/B/C”. I show an example of this in the sample code.

Remember that you can check the type of an object called obj at the python command line with
the function type(obj) and you can see the available operations on that object with the commend
dir(obj) .

I have written for you a set of functions that show how to make use of ElementTree and Element
to read in, traverse, and look for items in the XML tree. In this question I ask you to do some
simple extensions of what I’ve already done. Subquestion (f) is more advanced, and so is
optional for bonus points.

(a) [0 points] Experiment with loading in and parsing the XML file by running the functions
I’ve provided and doing some variations of your own to get familiar with this package.

(b) [1 point] Write code that uses the XML structure to print out all the dessert wines.

(c) [1 point] Write code that prints out all and only the leaf nodes, in depth-first traversal
order.

(d) [1 point] Create a new object of type Element that is an additional region in one of the
countries, putting it in the last position among the other regions for that country. In other
words, add that object to the appropriate place in the XML tree as the most recently
added item for that country. Show that it is working correctly by printing out the relevant
country’s information.

(e) [2 points] Write code to print out the entire tree in breadth-first traversal order.

i206	
 Spring	
 2013:	
 Assignment	
 6	

	

(f) (Optional, bonus) [2 points] To really be useful, you should be able to use this package
to create new XML files as well as to process existing ones. For this exercise, begin with
a file that has information in a hierarchical format similar to what you’d get from a CSV file
or spreadsheet. Assume the file contains information only for the XML tags (not the IDs
or other attributes). Here is an example, also provided in the materials enclosed with
this assignment in a file called cities.txt . You should add more hierarchical items to this
file (your choice how many) or use your own file with your own hierarchy:

USA|California|Berkeley	

USA|California|Moraga	

USA|California|Orinda	

USA|Nevada|Vegas	

USA|Nevada|Reno	

Note that each line includes the top of the hierarchy, then the second level, then the third
(you can go down as many levels as you like). If an internal node repeats, it is shown in
the hierarchy. This gives you a path to each leaf and makes it easier to process the
input.

Read in these lines of text and use them to build up an XML tree that when printed out in
preorder looks like the figure below (although the order of siblings doesn’t matter). Note
that if you want to have a root node at the top that is not from your file, that is ok and
probably makes the code easier to write; you don’t need to print it out in the final result.

I’ve put together some code to get you started, called buildXTree() in the file provided.
Use it just as some inspiration; it is not structured in a way that will work for the problem
at hand. You need to write the code to read in the lines from the input file and you need
to write a function, probably with a recursive call, to make this work. A hint for one way to
do this: treat each input line as a tag path; go through that path adding the highest level
node first, then the next level, and so on. If the tag is not in the tree yet, insert it. If it is in
the tree, just traverse it till you find the part of the path that hasn’t been added yet, and
add that, recursively.

Also, note that you can call tree.write(“filename.xml”) to write out your final XML code.

