
@Scalding

Argyris Zymnis @argyris
Oscar Boykin @posco

Twitter

https://github.com/twitter/scalding

https://github.com/twitter/scalding
https://github.com/twitter/scalding

• What is Scalding?

• Why Scala for Map/Reduce?

• How is it used at Twitter?

• An API to write Hadoop jobs in Scala

• Scala is a more natural language choice for
manipulating data in Hadoop

• Extensively used in Twitter’s revenue team
and other teams that use Scala

I use Pig. Why should I
care?

• Pig is good for quick and dirty tasks. Not so
good for running production pipelines

• Pig is not a programming language

• Pig scripts can quickly get complicated (lots
of copy pasting involved)

• UDFs are a pain

Wordcount in Java

Wordcount in Scalding

Recap: MapReduce

Map

Sort

Combine

Reduce

• Hard to build giant data processing
pipelines if you can only think in terms of
map and reduce

• There’s a need for a different language to
express high level user defined functions

• However going to Hive or Pig means that
you lose flexibility

Too low level

Scalding jobs
subclass Job

Yep, we’re counting
words:

Logic is in the
constructor

Yep, we’re counting
words:

Functions can
be called or

defined inline

Yep, we’re counting
words:

• Source objects read and write data (from
HDFS, DBs, MemCache, etc...)

• Pipes represent the flows of the data in the
job. You can think of Pipe as a distributed
list.

Scalding Model

Read and
Write data

through
Source objects

Yep, we’re counting
words:

Data is modeled
as streams of

named Tuples (of
objects)

Yep, we’re counting
words:

Why Scala

• The scala language has a lot of built-in
features that make domain-specific
languages easy to implement.

• Map/Reduce is already within the functional
paradigm.

• Scala’s collection API covers almost all usual
use cases.

Word Co-occurrence

Word Co-occurrence

We can use
standard scala

containers

Word Co-occurrence

We can do real
logic in the

mapper without
external UDFs.

Generalized
“plus” handles
lists/sets/maps

and can be
customized
(implement
Monoid[T])

Word Co-occurrence

GroupBuilder: enabling
parallel reductions

• groupBy takes a
function that mutates a
GroupBuilder.

• GroupBuilder adds
fields which are
reductions of
(potentially different)
inputs.

• On the left, we add 7
fields.

scald.rb

• driver script that compiles the job and runs
it locally or transfers and runs remotely.

• we plan to add EMR support.

Most functions in the API
have very close analogs in
scala.collection.Iterable.

mapReduceMap

• We abstract Cascading’s map-side
aggregation ability with a function called
mapReduceMap.

• If only mapReduceMaps are called, map-side
aggregation works. If a foldLeft is called
(which cannot be done map-side), scalding
falls back to pushing everything to the
reducers.

Most Reductions are
mapReduceMap

Scalding @Twitter
• Revenue quality team (ads targeting, market

insight, click-prediction, traffic-quality) uses
scalding for all our work.

• Scala engineers throughout the company
use it (i.e. storage, platform).

• More than 100 in-production scalding jobs,
hundreds of ad-hoc jobs.

• Not our only tool: Pig, PyCascading,
Cascalog, Hive are also used.

Example: finding
similarity

• A simple recommendation algorithm is
cosine similarity.

• Represent user-tweet interaction as a
vector, then find the users whose vectors
point in directions near the user in
question.

• We’ve developed a Matrix library on top of
scalding to make this easy.

Cosine Similarity

Matrices are
strongly
typed.

Cosine Similarity
Col,Row

types (Int,Int)
can be

anything
comparable.
Strings are

useful for text
indices.

Cosine Similarity

Value
(Double) can
be anything

with a Ring[T]
(plus/times)

Cosine Similarity

Operator
overloading

gives intuitive
code.

Matrix in foreground,
map/reduce behind

With this
syntax, we can
focus on logic,

not how to map
linear algebra to

Hadoop

• Do random-walks on the following graph.
Matrix power iteration until convergence:
(m * m * m * m).

• Dimensionality reduction of follower graph
(Matrix product by a lower dimensional
projection matrix).

• Triangle counting: (M*M*M).trace / 3

Example uses:

That’s it.

• follow and mention: @scalding @argyris
@posco

• pull reqs: http://github.com/twitter/scalding

http://github.com/twitter/scalding
http://github.com/twitter/scalding

Demo

