Spark

Making Big Data Analytics Interactive and
Real-Time

Matei Zaharia, in collaboration with
Mosharaf Chowdhury, Tathagata Das, Timothy Hunter,
Ankur Dave, Haoyuan Li, Justin Ma, Murphy McCauley,
Michael Franklin, Scott Shenker, lon Stoica

spark-project.org Ia b

Overview

Spark is a parallel framework that provides:
» Efficient primitives for in-memory data sharing
» Simple APls in Scala, Java, SQL
» High generality (applicable to many emerging problems)

This talk will cover:
» What it does
» How people are using it (including some surprises)
» Current research

Motivation

MapReduce simplified data analysis on large,
unreliable clusters

But as soon as it got popular, users wanted more:

» More complex, multi-pass applications (e.qg.
machine learning, graph algorithms)

» More interactive ad-hoc queries
» More real-time stream processing

One reaction: specialized models for some of
these apps (e.g. Pregel, Storm)

Motivation

Complex apps, streaming, and interactive queries
all need one thing that MapReduce lacks:

Efficient primitives for data sharing

Examples

HDFS HDFS HDFS HDFS
i read write i read write i

Input

HDFS query 1 result 1

read

query 2 result 2

query 3 result 3

Input

Slow due to replication and disk I/O,
but necessary for fault tolerance

Go
al- S
. Shari
I
INg _t Me
mo
Iﬂ), S;
PEEd

S

el & :
\\\\\\\\\\\\\\\\\\“\‘\\\\\\\\\\\

S

\\\\\\i\\\\\\\\

“g...
'\\\\\\\\\\\\\\
R

\\\\\\\\\\\\\\\‘\\\\\\\
R

Input

query <

on
roe-ltinne

query 2

, € G BRGS 4

3 N\
: {\{\\\\\\
s

g”,
.

query 3

Input

10-1
OOXf
aste
r1j1a

n ne

twork/disk

but

ho

w to

get F

T?

Challenge

How to design a distributed memory abstraction
that is both fault-tolerant and efficient?

Existing Systems

Existing in-memory storage systems have

interfaces based on fine-grained updates
» Reads and writes to cells in a table
» E.g. databases, key-value stores, distributed memory

Requires replicating data or logs across nodes

for fault tolerance =» expensive!
» 10-100x slower than memory write...

Solution: Resilient Distributed
Datasets (RDDs)

Provide an interface based on coarse-grained
operations (map, group-by, join, ...)

Efficient fault recovery using lineage
» Log one operation to apply to many elements
» Recompute lost partitions on failure
» No cost if nothing fails

RD
D
Recove ry

N \? N

on
pros_time

\M\\;\\\\\\\\ W

e
\\\\\\\\\\\\\\\\\\\\\‘\‘\\\\\\\\\\\\\\

Generality of RDDs

RDDs can express surprisingly many parallel

algorithms
» These naturally apply same operation to many items

Capture many current programming models
» Data flow models: MapReduce, Dryad, SQL, ...
» Specialized models for iterative apps: Pregel, iterative
MapReduce, PowerGraph, ...

Allow these models to be composed

Outline

Programming interface
Examples
User applications

mplementation

Demo

Current research: Spark Streaming

Spark Programming Interface

Language-integrated APl in Scala*

Provides:
» Resilient distributed datasets (RDDs)

* Partitioned collections with controllable caching
» Operations on RDDs

* Transformations (define RDDs), actions (compute results)
» Restricted shared variables (broadcast, accumulators)

*Also Java, SQL and soon Python

Example: Log Mining

Load error messages from a log into memory, then
interactively search for various patterns

lines = spark.textFile(“hdfs://...")
errors = lines.filter(_.startswith(“ERROR"))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.persist()

cachedMsgs.filter(_.contains(“foo”)).count

cachedmsgs.filter(_.contains(“bar”)).count

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)

Fault Recovery

RDDs track the graph of transformations that
built them (their lineage) to rebuild lost data

Eg messages = textFile(...).filter(_.contains(“error”))
.map(_.split(‘\t’)(2))

HadoopRDD FilteredRDD MappedRDD
path = hdfs://... func = _.contains(...) func = _.split(...)

Fault Recovery Results

—_ 11 Failure happens

W 120 J PP

.q§)100 \81

+ 8o

5 ¢ 57 56 58 58 57 59 57 59
5

© 40

2

20
Illlllllll
7 8 9

1 2 3 4 5 6
Iteration

10

Example: Logistic Regression

Goal: find best line separating two sets of points

random initial line
+*
R

+ N
\ AN
*

AY
\
\

Example: Logistic Regression

val data = spark.textFile(...).map(readPoint).persist()

var w = Vector.random(D)

for (1 <- 1 to ITERATIONS) {
val gradient = data.map(p =>
(1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.X
).reduce(_ + _)
w -= gradient

}

printin("Final w: " + w)

Logistic Regression Performance

Running Time (min)

60
50
40
30
20

10

10 20

Number of Iterations

110 s [iteration

/

Hadoop
W Spark

\

first iteration 8o s
further iterations 6 s

30

Example: Collaborative Filtering

Goal: predict users’ movie ratings based on past
ratings of other movies

(12 .”I

Users

VD VU U1 D
VoV VU U
J = W W

> O v e
v U1 W v
N vV VU -V

€ Movies >

Model and Algorithm

Model R as product of user and movie feature
matrices A and B of size UxK and MxK

-0

Alternating Least Squares (ALS)
» Start with random A & B
» Optimize user vectors (A) based on movies
» Optimize movie vectors (B) based on users
» Repeat until converged

Serial ALS

var R = readRatingsMatrix(...)

var A = // array of U random vectors
var B = // array of M random vectors

for (i <- 1 to ITERATIONS) {
A = (0 until U).map(i => updateuser(i, B, R))
B = (0 until M).map(1 => updateMovie(i, A, R))
}

Range objects

Naive Spark ALS

var R

var A

var

B

readRatingsMatrix(...)

// array of U random vectors
// array of M random vectors

for (1 <- 1 to ITERATIONS) {

A

B

spark.parallelize(0 until U, numSlices)

Problem:

.map(i => updateUser(i, B, R)) <= R re-sent

.collect()
spark.parallelize(0 until M, numSlices)

to all nodes

.map(i => updateMovie(i, A, R)) <« iNneach

.collect()

iteration

g /

Efficient Spark ALS

var R = spark.broadcast(readratingsmatrix(...)) Solution:
mark R as

var A = // array of U random vectors broadcast

var B = // array of M random vectors :
variable

for (1 <- 1 to ITERATIONS) {
A = spark.parallelize(0 until U, numSlices)
.map(i => updateuUser(i, B, R.value))
.collect()
B = spark.parallelize(0 until M, numSlices)
.map(1 => updateMovie(i, A, R.value))
.collect()

Result: 3x performance improvement

Scaling Up Broadcast

250

N
o
o

150

100

Iteration time (s)

(Op)
@)

Initial version (HDFS)

B Communication
W Computation

10 30 60 90

Number of machines

Cornet P2P broadcast

250 7 .
® Communication
@ 200 - W Computation
£
.5 150 7
c
2
+ 100 7
©
} S
(V]
)
o I I l
(o) T T T 1
10 30 60 90

Number of machines

[Chowdhury et al, SIGCOMM 2011]

Other RDD Operations

Transformations
(define a new RDD)

flatMap
union
join
cogroup
Cross

Actions
(return aresult to
driver program)

map
filter
sample
groupByKey
reduceByKey
sortByKey
collect
reduce
count
save

Spark in Java

Tines.filter(_.contains(“error”)).count()

JavaRDD<String> lines = sc.textFile(...);

Tines.filter(new Function<String, Boolean>() {
Boolean call(String s) {
return s.contains(“error’”);

}
1) .count();

Spark IN Python (Coming Soon!)

lines = sc.textFile(sys.argv[1l])

counts = lines.flatmap(lambda x: x.split(" ")) \
.map(Tambda x: (x, 1)) \
.reduceByKey(lambda x, y: X + y)

Outline

Programming interface
Examples
User applications

mplementation

Demo

Current research: Spark Streaming

Spark Users

CON S foursquiare
quantiFind auib YaHoO!
C .
EAKLOUT & TRVERIOY Melion
University

Unjtzsntv 01(‘:111f0rma
BerKeley

400+ User meetup, 20+ contributors

User Applications

Crowdsourced traffic estimation (Mobile Millennium)
Video analytics & anomaly detection (Conviva)
Ad-hoc queries from web app (Quantifind)

Twitter spam classification (Monarch)

DNA sequence analysis (SNAP)

Mobile Millennium Project

Estimate city traffic from GPS-equipped vehicles

(e.g. SF taxis)

3
n
-

| Square
round

le Ave

Jister S\

ey
Sac! ames WMo =
>

St Francis
i Memonal
Hospatal

~ 1o wpneld

')

. \
thedral t
pine St
Downt

@ 1emod

d S oA
Al Q ‘.'Hry'z.% P
§ r~ z:n). Square 4 o=
-~ X e R o
2 18 3 pushSt
= 2 ' i

ontgomery
St BART

y =
P) & 4 San Fran
<| ":'r'nwvll ‘_.f Museum (
> St BART » ‘}’ Moderm /£
o 1
)|
6‘9 -
&
& /
[%
%
Contne J\’
-] F 4 '

Sample Data

One day of Yellow Cab data: 2010-03-29 04:00:42.0

©
® o
L o
° . o‘
) e ©,° ¢
L] g o .'0..
. & o ° * e % o °
. 8 *e°
° e © O
° °
o
oo ° ° B
™ % ®
o o

Credit: Tim Hunter, with support of the Mobile Millennium team; P.l. Alex Bayen; traffic.berkeley.edu

Challenge

Data is noisy and sparse (1 sample/minute)

Must infer path taken by each vehicle in
addition to travel time distribution on each link

Challenge

Data is noisy and sparse (1 sample/minute)

Must infer path taken by each vehicle in
addition to travel time distribution on each link

/
|
\

Solution

EM algorithm to estimate paths and travel time
distributions simultaneously

—_N
- ~

,’I/Q Q Q Q observations
| | ! ! flatMap

:l LD M L‘Jj % weighted path samples
\\ W groupByKey

\
' link parameters

' broadcast

“———’

Res U Its [Hunter et al, SOCC 2011]

B Mstep
© H000 [Shuffle step
c 1 Estep
g 2,000
R~

0 . 1 —] 1
16 80 160 320 640

Number of cores

[3x speedup from caching, 4.5x from broadcast

Conviva GeoReport

Hive 20

Spark | o.5

Time (hours)
0 5 10 15 20

SQL aggregations on many keys w/ same filter

£,0x gain over Hive from avoiding repeated |/O,
deserialization and filtering

Other Programming Models

Pregel on Spark (Bagel)

» 200 lines of code

Iterative MapReduce
» 200 lines of code

Hive on Spark (Shark)

» 5000 lines of code
» Compatible with Apache Hive
» Machine learning ops. in Scala

Outline

Programming interface
Examples
User applications

mplementation

Demo

Current research: Spark Streaming

Implementation

Runs on Apache Mesos cluster
manager to coexist w/ Hadoop Auu
Supports any Hadoop storage S

system (HDFS, HBase, ...) "Node | Node | Node

Easy local mode and EC2 launch scripts

No changes to Scala

Task Scheduler

Runs general DAGs

Pipelines functions
within a stage

Cache-aware data
reuse & locality

Partitioning-aware
to avoid shuffles

I
|
|
|
|
|

W = cached data partition

Language Integration

Scala closures are Serializable Java objects
» Serialize on master, load & run on workers

Not quite enough
» Nested closures may reference entire outer scope,
pulling in non-Serializable variables not used inside
» Solution: bytecode analysis + reflection

Interactive Spark

Modified Scala interpreter to allow Spark to be

used interactively from the command line
» Track variables that each line depends on
» Ship generated classes to workers

Enables in-memory exploration of big data

Outline

Programming interface
Examples
User applications

mplementation

Demo

Current research: Spark Streaming

Outline

Programming interface
Examples
User applications

mplementation

Demo

Current research: Spark Streaming

Motivation

Many “big data” apps need to work in real time
» Site statistics, spam filtering, intrusion detection, ...

To scale to 100s of nodes, need:

» Fault-tolerance: for both crashes and stragglers
» Efficiency: don’t consume many resources beyond
base processing

Challenging in existing streaming systems

Traditional Streaming Systems

Continuous processing model
» Each node has long-lived state
» For each record, update state & send new records

mutable state

—
— ush
node | P (

node 3

input records ——

r

input records ———

Traditional Streaming Systems

Fault tolerance via replication or upstream backup:

Traditional Streaming Systems

Fault tolerance via replication or upstream backup:

input

] [Only need 1 standby,

[hardware cost but slow to recover

—

Traditional Streaming Systems

Fault tolerance via replication or upstream backup:

[Borealis, Flux] [Hwang et al, 2005]

Observation

Batch processing models, such as MapReduce,

do provide fault tolerance efficiently
» Divide job into deterministic tasks
» Rerun failed/slow tasks in parallel on other nodes

ldea: run streaming computations as a series of

small, deterministic batch jobs
» Same recovery schemes at much smaller timescale
» To make latency low, store state in RDDs

Discretized Stream Processing

batch operation

Fault Recovery

Checkpoint state RDDs periodically

If a node fails/straggles, rebuild lost RDD partitions
In parallel on other nodes

map

]

output dataset
—

input dataset

1) O L0

Faster recovery than upstream backup,
without the cost of replication

How Fast Can It Go?

Can process over 60M records/s (6 GB/s) on
100 nodes at sub-second latency

~ 80 —~ 40
¥ Grep 0 Top KWords
é’ 60 é’ 30
£ S
~ 40 — 20
I /' I
2 20 2 10
o / =#-1 secC o =#-1 secC
O - 2 sec O . 2 sec
X o X o
0 50 100 0 50 100
Nodes in Cluster Nodes in Cluster

Max throughput under a given latency (1 or 25s)

Comparison with Storm

Grep Top KWords
) %0 ® Spark) 3° W Spark
3 60 Storm ? Storm
c S 20
g 40 3
2 % 10
20

S s

0 0

100 1000 100 1000
Record Size (bytes) Record Size (bytes)

Storm limited to 100K records/s/node Lack Spark’s
FT guarantees

Also tried S4: 10K records/s/node

Commercial systems: O(5o0K) total

How Fast Can It Recover?

Recovers from faults/stragglers within 1 second

Failure happens

1.5 \

- ||||||||||| ||||||‘||||||
Time (s)

Sliding WordCount on 20 nodes with 10s checkpoint interval

Interval Processing
Time (s)

Programming Interface

Extension to Spark: Spark Streaming

|II

» All Spark operators plus new “stateful” ones

// Running count of pageviews by URL 1es counts
views = readStream("http:...", "1s")
ones = views.map(ev => (ev.url, 1))

counts = ones.runningReduce(_ + _)

=RDD @ = partition

Incremental Operators

words.reduceBywindow(“5s”, max) words.reduceBywindow(“5s”, _+_, _-_)
words interval sliding words interval sliding
max max counts counts
T t
t+1 t+1
t+2 t+2
t+3 t+3
t+4 t+4

Associative function Associative & invertible

Applications

Mobile Millennium

Conviva video dashboard traffic estimation

4.0 v 2000
wn
c 3.5 hd
-9 30 =~

. wn
& 2 g

(V) .
o e &
92 : S 1000
O = 1. o
> é > o
g 1.0 o 5oo
+ 0.5 n
O o
< 0.0 G) o)
0 16 32 48 64 O 20 40 60 8o
Nodes in Cluster Nodes in Cluster

(>50 session-level metrics) (online EM algorithm)

Unifying Streaming and Batch

D-streams and RDDs can seamlessly be combined
» Same execution and fault recovery models

Enables powerful features:
» Combining streams with historical data:

pagevViews.joinChistoricCounts) .map(...)

» Interactive ad-hoc queries on stream state:

pageviews.slice("21:007,“21:05”).topK(10)

Benefits of a Unified Stack

Write each algorithm only once
Reuse data across streaming & batch jobs

Query stream state instead of waiting for import

Some users were doing this manually!
» Conviva anomaly detection, Quantifind dashboard

Conclusion

"Big data” is moving beyond one-pass batch jobs,
to low-latency apps that need data sharing

RDDs offer fault-tolerant sharing at memory speed

Spark uses them to combine streaming, batch &
interactive analytics in one system

www.spark-project.org

Related Work

DryadLINQ, FlumelJava

» Similar “distributed collection” API, but cannot reuse
datasets efficiently across queries

GraphLab, Piccolo, BigTable, RAMCloud

» Fine-grained writes requiring replication or checkpoints

Iterative MapReduce (e.qg. Twister, HaLoop)
» Implicit data sharing for a fixed computation pattern

Relational databases
» Lineage/provenance, logical logging, materialized views

Caching systems (e.g. Nectar)
» Store data in files, no explicit control over what is cached

Behavior with Not Enough RAM

100

_ o L

% 80 o S

= : ~

,z 60 I 3 ~

o o)

g 4 I : 0

S 20 -

0

Cache 25% 50% 75% Fully
disabled cached

% of working set in memory

RDDs for Debugging

Debugging general distributed apps is very hard

However, Spark and other recent frameworks
run deterministic tasks for fault tolerance

Leverage this determinism for debugging:
» Log lineage for all RDDs created (small)
» Let user replay any task in jdb, rebuild any RDD to
query it interactively, or check assertions

