Spark

Making Big Data Analytics Interactive and Real-Time

Matei Zaharia, in collaboration with Mosharaf Chowdhury, Tathagata Das, Timothy Hunter, Ankur Dave, Haoyuan Li, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker, Ion Stoica

-amplab __

Overview

Spark is a parallel framework that provides:

- » Efficient primitives for in-memory data sharing
- » Simple APIs in Scala, Java, SQL
- » High generality (applicable to many emerging problems)

This talk will cover:

- » What it does
- » How people are using it (including some surprises)
- » Current research

Motivation

MapReduce simplified data analysis on large, unreliable clusters

But as soon as it got popular, users wanted more:

- » More complex, multi-pass applications (e.g. machine learning, graph algorithms)
- » More interactive ad-hoc queries
- » More **real-time** stream processing

One reaction: specialized models for some of these apps (e.g. Pregel, Storm)

Motivation

Complex apps, streaming, and interactive queries all need one thing that MapReduce lacks:

Efficient primitives for data sharing

Examples

Goal: Sharing at Memory Speed

10-100× faster than network/disk, but how to get FT?

Challenge

How to design a distributed memory abstraction that is both **fault-tolerant** and **efficient**?

Existing Systems

Existing in-memory storage systems have interfaces based on *fine-grained* updates

- » Reads and writes to cells in a table
- » E.g. databases, key-value stores, distributed memory

Requires replicating data or logs across nodes for fault tolerance \rightarrow expensive!

» 10-100x slower than memory write...

Solution: Resilient Distributed Datasets (RDDs)

Provide an interface based on *coarse-grained* operations (map, group-by, join, ...)

Efficient fault recovery using lineage

- » Log one operation to apply to many elements
- » Recompute lost partitions on failure
- » No cost if nothing fails

RDD Recovery

Generality of RDDs

RDDs can express surprisingly many parallel algorithms

» These naturally apply same operation to many items

Capture many current programming models

- » Data flow models: MapReduce, Dryad, SQL, ...
- » **Specialized models** for iterative apps: Pregel, iterative MapReduce, PowerGraph, ...

Allow these models to be composed

Outline

Programming interface

Examples

User applications

Implementation

Demo

Current research: Spark Streaming

Spark Programming Interface

Language-integrated API in Scala*

Provides:

- » Resilient distributed datasets (RDDs)
 - Partitioned collections with controllable caching
- » Operations on RDDs
 - Transformations (define RDDs), actions (compute results)
- » Restricted shared variables (broadcast, accumulators)

^{*}Also Java, SQL and soon Python

Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```
lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
messages = errors.map(_.split('\t')(2))
cachedMsgs = messages.persist()
cachedMsgs.filter(_.contains("foo")).count
cachedMsgs.filter(_.contains("bar")).count
 Result: scaled to 1 TB data in 5-7 sec
```

(vs 170 sec for on-disk data)

Fault Recovery

RDDs track the graph of transformations that built them (their *lineage*) to rebuild lost data

Fault Recovery Results

Example: Logistic Regression

Goal: find best line separating two sets of points

Example: Logistic Regression

```
val data = spark.textFile(...).map(readPoint).persist()
var w = Vector.random(D)
for (i <- 1 to ITERATIONS) {
  val gradient = data.map(p =>
    (1 / (1 + \exp(-p.y*(w \text{ dot } p.x))) - 1) * p.y * p.x
  ) reduce(_ + _)
  w -= gradient
println("Final w: " + w)
```

Logistic Regression Performance

Example: Collaborative Filtering

Goal: predict users' movie ratings based on past ratings of other movies

$$R = \begin{pmatrix} 1 & ? & ? & 4 & 5 & ? & 3 \\ ? & ? & 3 & 5 & ? & ? & 3 \\ 5 & ? & 5 & ? & ? & ? & 1 \\ 4 & ? & ? & ? & ? & 2 & ? \end{pmatrix}$$

$$\downarrow \text{Movies} \longrightarrow$$

Model and Algorithm

Model R as product of user and movie feature matrices A and B of size U×K and M×K

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Alternating Least Squares (ALS)

- » Start with random A & B
- » Optimize user vectors (A) based on movies
- » Optimize movie vectors (B) based on users
- » Repeat until converged

Serial ALS

```
var R = readRatingsMatrix(...)

var A = // array of U random vectors
var B = // array of M random vectors

for (i <- 1 to ITERATIONS) {
   A = (0 until U).map(i => updateUser(i, B, R))
   B = (0 until M).map(i => updateMovie(i, A, R))
}

Range objects
```

Naïve Spark ALS

```
var R = readRatingsMatrix(...)
var A = // array of U random vectors
var B = // array of M random vectors
for (i <- 1 to ITERATIONS) {
  A = spark.parallelize(0 until U, numSlices)
                                                  Problem:
           map(i => updateUser(i, B, R))
                                                  R re-sent
           .collect()
                                                 to all nodes
  B = spark.parallelize(0 until M, numSlices)
                                                   in each
           map(i => updateMovie(i, A, R)) 
           .collect()
                                                  iteration
```

Efficient Spark ALS

```
var R = spark.broadcast(readRatingsMatrix(...))
var A = // array of U random vectors
var B = // array of M random vectors
for (i <- 1 to ITERATIONS) {
  A = spark.parallelize(0 until U, numSlices)
           .map(i => updateUser(i, B, R.value))
           .collect()
  B = spark.parallelize(0 until M, numSlices)
           .map(i => updateMovie(i, A, R.value))
           .collect()
}
```

Result: 3× performance improvement

Solution: mark R as broadcast variable

Scaling Up Broadcast

Initial version (HDFS)

Number of machines

Cornet P2P broadcast

[Chowdhury et al, SIGCOMM 2011]

Other RDD Operations

flatMap map union filter join **Transformations** sample cogroup (define a new RDD) groupByKey reduceByKey cross sortByKey collect reduce **Actions** (return a result to count driver program) save

Spark in Java

```
lines.filter(_.contains("error")).count()
JavaRDD<String> lines = sc.textFile(...);
lines.filter(new Function<String, Boolean>() {
  Boolean call(String s) {
    return s.contains("error");
}).count();
```

Spark in Python (Coming Soon!)

Outline

Programming interface

Examples

User applications

Implementation

Demo

Current research: Spark Streaming

Spark Users

quantifind arono YAHOO!

400+ user meetup, 20+ contributors

User Applications

Crowdsourced traffic estimation (Mobile Millennium)

Video analytics & anomaly detection (Conviva)

Ad-hoc queries from web app (Quantifind)

Twitter spam classification (Monarch)

DNA sequence analysis (SNAP)

. . .

Mobile Millennium Project

Estimate city traffic from GPS-equipped vehicles

(e.g. SF taxis)

Sample Data

One day of Yellow Cab data: 2010-03-29 04:00:42.0

Challenge

Data is noisy and sparse (1 sample/minute)

Must infer path taken by each vehicle in addition to travel time distribution on each link

Challenge

Data is noisy and sparse (1 sample/minute)

Must infer path taken by each vehicle in addition to travel time distribution on each link

Solution

EM algorithm to estimate paths and travel time distributions simultaneously

Results

[Hunter et al, SOCC 2011]

3× speedup from caching, 4.5x from broadcast

Conviva GeoReport

SQL aggregations on many keys w/ same filter 40× gain over Hive from avoiding repeated I/O, deserialization and filtering

Other Programming Models

Pregel on Spark (Bagel)

» 200 lines of code

Iterative MapReduce

» 200 lines of code

Hive on Spark (Shark)

- » 5000 lines of code
- » Compatible with Apache Hive
- » Machine learning ops. in Scala

Outline

Programming interface

Examples

User applications

Implementation

Demo

Current research: Spark Streaming

Implementation

Runs on Apache Mesos cluster manager to coexist w/ Hadoop

Supports any Hadoop storage system (HDFS, HBase, ...)

Easy local mode and EC2 launch scripts

No changes to Scala

Task Scheduler

Runs general DAGs

Pipelines functions within a stage

Cache-aware data reuse & locality

Partitioning-aware to avoid shuffles

Language Integration

Scala closures are Serializable Java objects

» Serialize on master, load & run on workers

Not quite enough

- » Nested closures may reference entire outer scope, pulling in non-Serializable variables not used inside
- » Solution: bytecode analysis + reflection

Interactive Spark

Modified Scala interpreter to allow Spark to be used interactively from the command line

- » Track variables that each line depends on
- » Ship generated classes to workers

Enables in-memory exploration of big data

Outline

Programming interface

Examples

User applications

Implementation

Demo

Current research: Spark Streaming

Outline

Programming interface

Examples

User applications

Implementation

Demo

Current research: Spark Streaming

Motivation

Many "big data" apps need to work in real time » Site statistics, spam filtering, intrusion detection, ...

To scale to 100s of nodes, need:

- » Fault-tolerance: for both crashes and stragglers
- » Efficiency: don't consume many resources beyond base processing

Challenging in existing streaming systems

Continuous processing model

- » Each node has long-lived state
- » For each record, update state & send new records

Fault tolerance via replication or upstream backup:

Fault tolerance via replication or upstream backup:

Fault tolerance via replication or upstream backup:

Observation

Batch processing models, such as MapReduce, do provide fault tolerance efficiently

- » Divide job into deterministic tasks
- » Rerun failed/slow tasks in parallel on other nodes

Idea: run streaming computations as a series of small, deterministic batch jobs

- » Same recovery schemes at much smaller timescale
- » To make latency low, store state in RDDs

Discretized Stream Processing

Fault Recovery

Checkpoint state RDDs periodically

If a node fails/straggles, rebuild lost RDD partitions in parallel on other nodes

How Fast Can It Go?

Can process over **6oM records/s** (**6 GB/s**) on 100 nodes at **sub-second** latency

Max throughput under a given latency (1 or 2s)

Comparison with Storm

Storm limited to 100K records/s/node
Also tried S4: 10K records/s/node

Commercial systems: O(500K) total

Lack Spark's FT guarantees

How Fast Can It Recover?

Recovers from faults/stragglers within 1 second

Sliding WordCount on 20 nodes with 10s checkpoint interval

Programming Interface

Extension to Spark: Spark Streaming

» All Spark operators plus new "stateful" ones

```
// Running count of pageviews by URL
views = readStream("http:...", "1s")
ones = views.map(ev => (ev.url, 1))
counts = ones.runningReduce(_ + _)
```


Incremental Operators

words.reduceByWindow("5s", max)

words.reduceByWindow("5s", _+_, _-_)

Associative function

Associative & invertible

Applications

Conviva video dashboard

(>50 session-level metrics)

Mobile Millennium traffic estimation

(online EM algorithm)

Unifying Streaming and Batch

D-streams and RDDs can seamlessly be combined

» Same execution and fault recovery models

Enables powerful features:

» Combining streams with historical data:

```
pageViews.join(historicCounts).map(...)
```


» Interactive ad-hoc queries on stream state:

```
pageViews.slice("21:00","21:05").topK(10)
```


Benefits of a Unified Stack

Write each algorithm only once

Reuse data across streaming & batch jobs

Query stream state instead of waiting for import

Some users were doing this manually!

» Conviva anomaly detection, Quantifind dashboard

Conclusion

"Big data" is moving beyond one-pass batch jobs, to low-latency apps that need data sharing

RDDs offer fault-tolerant sharing at memory speed

Spark uses them to combine streaming, batch & interactive analytics in one system

www.spark-project.org

Related Work

DryadLINQ, FlumeJava

» Similar "distributed collection" API, but cannot reuse datasets efficiently *across* queries

GraphLab, Piccolo, BigTable, RAMCloud

» Fine-grained writes requiring replication or checkpoints

Iterative MapReduce (e.g. Twister, HaLoop)

» Implicit data sharing for a fixed computation pattern

Relational databases

» Lineage/provenance, logical logging, materialized views

Caching systems (e.g. Nectar)

» Store data in files, no explicit control over what is cached

Behavior with Not Enough RAM

RDDs for Debugging

Debugging general distributed apps is very hard

However, Spark and other recent frameworks run deterministic tasks for fault tolerance

Leverage this determinism for debugging:

- » Log lineage for all RDDs created (small)
- » Let user *replay* any task in jdb, *rebuild* any RDD to query it interactively, or check *assertions*