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Overview

Spark is a parallel framework that provides:
» Efficient primitives for in-memory data sharing
» Simple APls in Scala, Java, SQL
» High generality (applicable to many emerging problems)

This talk will cover:
» What it does
» How people are using it (including some surprises)
» Current research



Motivation

MapReduce simplified data analysis on large,
unreliable clusters

But as soon as it got popular, users wanted more:

» More complex, multi-pass applications (e.qg.
machine learning, graph algorithms)

» More interactive ad-hoc queries
» More real-time stream processing

One reaction: specialized models for some of
these apps (e.g. Pregel, Storm)



Motivation

Complex apps, streaming, and interactive queries
all need one thing that MapReduce lacks:

Efficient primitives for data sharing



Examples

HDFS HDFS HDFS HDFS
i read write i read write i

Input

HDFS query 1 result 1

read

query 2 result 2

query 3 result 3

Input

Slow due to replication and disk I/O,
but necessary for fault tolerance
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Challenge

How to design a distributed memory abstraction
that is both fault-tolerant and efficient?



Existing Systems

Existing in-memory storage systems have

interfaces based on fine-grained updates
» Reads and writes to cells in a table
» E.g. databases, key-value stores, distributed memory

Requires replicating data or logs across nodes

for fault tolerance =» expensive!
» 10-100x slower than memory write...



Solution: Resilient Distributed
Datasets (RDDs)

Provide an interface based on coarse-grained
operations (map, group-by, join, ...)

Efficient fault recovery using lineage
» Log one operation to apply to many elements
» Recompute lost partitions on failure
» No cost if nothing fails
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Generality of RDDs

RDDs can express surprisingly many parallel

algorithms
» These naturally apply same operation to many items

Capture many current programming models
» Data flow models: MapReduce, Dryad, SQL, ...
» Specialized models for iterative apps: Pregel, iterative
MapReduce, PowerGraph, ...

Allow these models to be composed



Outline

Programming interface
Examples
User applications

mplementation

Demo

Current research: Spark Streaming



Spark Programming Interface

Language-integrated APl in Scala*

Provides:
» Resilient distributed datasets (RDDs)

* Partitioned collections with controllable caching
» Operations on RDDs

* Transformations (define RDDs), actions (compute results)
» Restricted shared variables (broadcast, accumulators)

*Also Java, SQL and soon Python



Example: Log Mining

Load error messages from a log into memory, then
interactively search for various patterns

lines = spark.textFile(“hdfs://...")
errors = lines.filter(_.startswith(“ERROR"))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.persist()

cachedMsgs.filter(_.contains(“foo”)).count

cachedmsgs.filter(_.contains(“bar”)).count

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)




Fault Recovery

RDDs track the graph of transformations that
built them (their lineage) to rebuild lost data

Eg messages = textFile(...).filter(_.contains(“error”))
.map(_.split(‘\t’)(2))

HadoopRDD FilteredRDD MappedRDD
path = hdfs://... func = _.contains(...) func = _.split(...)



Fault Recovery Results
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Example: Logistic Regression

Goal: find best line separating two sets of points

random initial line
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Example: Logistic Regression

val data = spark.textFile(...).map(readPoint).persist()

var w = Vector.random(D)

for (1 <- 1 to ITERATIONS) {
val gradient = data.map(p =>
(1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.X
).reduce(_ + _)
w -= gradient

}

printin("Final w: " + w)



Logistic Regression Performance

Running Time (min)

60
50
40
30
20

10

10 20

Number of Iterations

110 s [ iteration

/

Hadoop
W Spark

\

first iteration 8o s
further iterations 6 s

30



Example: Collaborative Filtering

Goal: predict users’ movie ratings based on past
ratings of other movies
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Model and Algorithm

Model R as product of user and movie feature
matrices A and B of size UxK and MxK

-0

Alternating Least Squares (ALS)
» Start with random A & B
» Optimize user vectors (A) based on movies
» Optimize movie vectors (B) based on users
» Repeat until converged




Serial ALS

var R = readRatingsMatrix(...)

var A = // array of U random vectors
var B = // array of M random vectors

for (i <- 1 to ITERATIONS) {
A = (0 until U).map(i => updateuser(i, B, R))
B = (0 until M).map(1 => updateMovie(i, A, R))
}

Range objects



Naive Spark ALS

var R

var A

var

B

readRatingsMatrix(...)

// array of U random vectors
// array of M random vectors

for (1 <- 1 to ITERATIONS) {

A

B

spark.parallelize(0 until U, numSlices)

Problem:

.map(i => updateUser(i, B, R)) <= R re-sent

.collect()
spark.parallelize(0 until M, numSlices)

to all nodes

.map(i => updateMovie(i, A, R)) <« iNneach

.collect()

iteration

g /




Efficient Spark ALS

var R = spark.broadcast(readratingsmatrix(...)) Solution:
mark R as

var A = // array of U random vectors broadcast

var B = // array of M random vectors :
variable

for (1 <- 1 to ITERATIONS) {
A = spark.parallelize(0 until U, numSlices)
.map(i => updateuUser(i, B, R.value))
.collect()
B = spark.parallelize(0 until M, numSlices)
.map(1 => updateMovie(i, A, R.value))
.collect()

Result: 3x performance improvement




Scaling Up Broadcast
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Other RDD Operations

Transformations
(define a new RDD)

flatMap
union
join
cogroup
Cross

Actions
(return aresult to
driver program)

map
filter
sample
groupByKey
reduceByKey
sortByKey
collect
reduce
count
save




Spark in Java

Tines.filter(_.contains(“error”)).count()

JavaRDD<String> lines = sc.textFile(...);

Tines.filter(new Function<String, Boolean>() {
Boolean call(String s) {
return s.contains(“error’”);

}
1) .count();



Spark IN Python (Coming Soon!)

lines = sc.textFile(sys.argv[1l])

counts = lines.flatmap(lambda x: x.split(" ")) \
.map(Tambda x: (x, 1)) \
.reduceByKey(lambda x, y: X + y)
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Spark Users
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User Applications

Crowdsourced traffic estimation (Mobile Millennium)
Video analytics & anomaly detection (Conviva)
Ad-hoc queries from web app (Quantifind)

Twitter spam classification (Monarch)

DNA sequence analysis (SNAP)



Mobile Millennium Project

Estimate city traffic from GPS-equipped vehicles

(e.g. SF taxis)
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Sample Data

One day of Yellow Cab data: 2010-03-29 04:00:42.0
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Credit: Tim Hunter, with support of the Mobile Millennium team; P.l. Alex Bayen; traffic.berkeley.edu




Challenge

Data is noisy and sparse (1 sample/minute)

Must infer path taken by each vehicle in
addition to travel time distribution on each link




Challenge

Data is noisy and sparse (1 sample/minute)

Must infer path taken by each vehicle in
addition to travel time distribution on each link
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Solution

EM algorithm to estimate paths and travel time
distributions simultaneously
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:l LD M L‘Jj % weighted path samples
\\ W groupByKey

\
' link parameters

' broadcast
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Res U Its [Hunter et al, SOCC 2011]
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Conviva GeoReport

Hive 20

Spark | o.5

Time (hours)
0 5 10 15 20

SQL aggregations on many keys w/ same filter

£,0x gain over Hive from avoiding repeated |/O,
deserialization and filtering



Other Programming Models

Pregel on Spark (Bagel)

» 200 lines of code

Iterative MapReduce
» 200 lines of code

Hive on Spark (Shark)

» 5000 lines of code
» Compatible with Apache Hive
» Machine learning ops. in Scala
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Implementation

Runs on Apache Mesos cluster
manager to coexist w/ Hadoop Auu
Supports any Hadoop storage S

system (HDFS, HBase, ...) "Node | Node | Node

Easy local mode and EC2 launch scripts

No changes to Scala



Task Scheduler

Runs general DAGs

Pipelines functions
within a stage

Cache-aware data
reuse & locality

Partitioning-aware
to avoid shuffles
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|
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|
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W = cached data partition




Language Integration

Scala closures are Serializable Java objects
» Serialize on master, load & run on workers

Not quite enough
» Nested closures may reference entire outer scope,
pulling in non-Serializable variables not used inside
» Solution: bytecode analysis + reflection



Interactive Spark

Modified Scala interpreter to allow Spark to be

used interactively from the command line
» Track variables that each line depends on
» Ship generated classes to workers

Enables in-memory exploration of big data
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Motivation

Many “big data” apps need to work in real time
» Site statistics, spam filtering, intrusion detection, ...

To scale to 100s of nodes, need:

» Fault-tolerance: for both crashes and stragglers
» Efficiency: don’t consume many resources beyond
base processing

Challenging in existing streaming systems



Traditional Streaming Systems

Continuous processing model
» Each node has long-lived state
» For each record, update state & send new records

mutable state

—
— ush
node | P (

node 3

input records ——

r

input records ———




Traditional Streaming Systems

Fault tolerance via replication or upstream backup:




Traditional Streaming Systems

Fault tolerance via replication or upstream backup:

input

] [ Only need 1 standby,

[ hardware cost but slow to recover

—




Traditional Streaming Systems

Fault tolerance via replication or upstream backup:

[Borealis, Flux] [Hwang et al, 2005]



Observation

Batch processing models, such as MapReduce,

do provide fault tolerance efficiently
» Divide job into deterministic tasks
» Rerun failed/slow tasks in parallel on other nodes

ldea: run streaming computations as a series of

small, deterministic batch jobs
» Same recovery schemes at much smaller timescale
» To make latency low, store state in RDDs



Discretized Stream Processing

batch operation




Fault Recovery

Checkpoint state RDDs periodically

If a node fails/straggles, rebuild lost RDD partitions
In parallel on other nodes

map

]

output dataset
—

input dataset

1) O L0

Faster recovery than upstream backup,
without the cost of replication



How Fast Can It Go?

Can process over 60M records/s (6 GB/s) on
100 nodes at sub-second latency
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Comparison with Storm

Grep Top KWords
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Storm limited to 100K records/s/node Lack Spark’s
FT guarantees

Also tried S4: 10K records/s/node

Commercial systems: O(5o0K) total



How Fast Can It Recover?

Recovers from faults/stragglers within 1 second

Failure happens
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Sliding WordCount on 20 nodes with 10s checkpoint interval

Interval Processing
Time (s)



Programming Interface

Extension to Spark: Spark Streaming

|II

» All Spark operators plus new “stateful” ones

// Running count of pageviews by URL 1es counts
views = readStream("http:...", "1s")
ones = views.map(ev => (ev.url, 1))

counts = ones.runningReduce(_ + _)

=RDD @ = partition



Incremental Operators

words.reduceBywindow(“5s”, max) words.reduceBywindow(“5s”, _+_, _-_)
words interval sliding words interval sliding
max max counts  counts
T t
t+1 t+1
t+2 t+2
t+3 t+3
t+4 t+4

Associative function Associative & invertible



Applications

Mobile Millennium

Conviva video dashboard traffic estimation
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Unifying Streaming and Batch

D-streams and RDDs can seamlessly be combined
» Same execution and fault recovery models

Enables powerful features:
» Combining streams with historical data:

pagevViews.joinChistoricCounts) .map(...)

» Interactive ad-hoc queries on stream state:

pageviews.slice("21:007,“21:05”).topK(10)



Benefits of a Unified Stack

Write each algorithm only once
Reuse data across streaming & batch jobs

Query stream state instead of waiting for import

Some users were doing this manually!
» Conviva anomaly detection, Quantifind dashboard



Conclusion

"Big data” is moving beyond one-pass batch jobs,
to low-latency apps that need data sharing

RDDs offer fault-tolerant sharing at memory speed

Spark uses them to combine streaming, batch &
interactive analytics in one system

www.spark-project.org




Related Work

DryadLINQ, FlumelJava

» Similar “distributed collection” API, but cannot reuse
datasets efficiently across queries

GraphLab, Piccolo, BigTable, RAMCloud

» Fine-grained writes requiring replication or checkpoints

Iterative MapReduce (e.qg. Twister, HaLoop)
» Implicit data sharing for a fixed computation pattern

Relational databases
» Lineage/provenance, logical logging, materialized views

Caching systems (e.g. Nectar)
» Store data in files, no explicit control over what is cached



Behavior with Not Enough RAM
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RDDs for Debugging

Debugging general distributed apps is very hard

However, Spark and other recent frameworks
run deterministic tasks for fault tolerance

Leverage this determinism for debugging:
» Log lineage for all RDDs created (small)
» Let user replay any task in jdb, rebuild any RDD to
query it interactively, or check assertions



