Big Learning with Graphs

Joseph Gonzalez

jegonzal@cs.cmu.edu

Yucheng Low
Aapo Kyrola
Haijie Gu
Danny Bickson
Arthur Gretton
Carlos Guestrin
Alex Smola
Joe Hellerstein
David O’Hallaron
Guy Blelloch
The Age of Big Data

28 Million Wikipedia Pages

6 Billion Flickr Photos

900 Million Facebook Users

72 Hours a Minute YouTube

“...growing at 50 percent a year...”

“... data a new class of economic asset, like currency or gold.”
Big Data

→

Big Graphs
• **Graphs** *encode relationships* between:

- People
- Products
- Ideas
- Facts
- Interests

• **Big**: billions of vertices and edges and rich metadata
Big graphs present exciting new opportunities ...
Big-Graphs are Essential to Data-Mining and Machine Learning

• Identify influential people and information
• Find communities
• Target ads and products
• Model complex data dependencies
Big Learning with Graphs

Understanding and using large-scale structured data.
Examples
PageRank (Centrality Measures)

• Iterate:

\[R[i] = \alpha + (1 - \alpha) \sum_{(j,i) \in E} \frac{1}{L[j]} R[j] \]

• Where:
 – \(\alpha \) is the random reset probability
 – \(L[j] \) is the number of links on page \(j \)

\[R[5] = \alpha + (1 - \alpha) \left(\frac{1}{3} R[1] + \frac{1}{1} R[4] \right) \]
Label Propagation (Structured Prediction)

- **Social Arithmetic:**
 - 50% What I list on my profile
 - 40% Sue Ann Likes
 - 10% Carlos Like

 I Like: 60% Cameras, 40% Biking

- **Recurrence Algorithm:**
 \[\text{Likes}[i] = \sum_{j \in \text{Friends}[i]} W_{ij} \times \text{Likes}[j] \]

 – iterate until convergence

- **Parallelism:**
 – Compute all \(\text{Likes}[i] \) in parallel

Collaborative Filtering: Independent Case

- Lord of the Rings
- Star Wars IV
- Star Wars I
- Harry Potter
- Pirates of the Caribbean
Collaborative Filtering: Exploiting Dependencies

What do I recommend??

Women on the Verge of a Nervous Breakdown
The Celebration
City of God
Wild Strawberries
La Dolce Vita
Matrix Factorization
Alternating Least Squares (ALS)

Iterate:

\[u_i = \arg \min_w \sum_{j \in N[i]} (r_{ij} - m_j \cdot w)^2 \]

\[m_j = \arg \min_w \sum_{i \in N[j]} (r_{ij} - u_i \cdot w)^2 \]

http://dl.acm.org/citation.cfm?id=1424269
Many More Algorithms

- **Collaborative Filtering**
 - Alternating Least Squares
 - Stochastic Gradient Descent
 - Tensor Factorization
 - SVD

- **Structured Prediction**
 - Loopy Belief Propagation
 - Max-Product Linear Programs
 - Gibbs Sampling

- **Semi-supervised ML**
 - Graph SSL
 - CoEM

- **Graph Analytics**
 - PageRank
 - Single Source Shortest Path
 - Triangle-Counting
 - Graph Coloring
 - K-core Decomposition
 - Personalized PageRank

- **Classification**
 - Neural Networks
 - Lasso
 ...

...
Graph Parallel Algorithms

Dependency Graph

Local Updates

Iterative Computation

My Interests

Friends Interests
What is the right tool for Graph-Parallel ML

Data-Parallel

Map Reduce
- Feature Extraction
- Cross Validation
- Computing Sufficient Statistics

Graph-Parallel

Map Reduce?
- Collaborative Filtering
- Graph Analytics
- Structured Prediction
- Clustering
Why not use Map-Reduce for Graph Parallel algorithms?
Data Dependencies are Difficult

- Difficult to express dependent data in Map Reduce
 - Substantial data transformations
 - User managed graph structure
 - Costly data replication
Iterative Computation is Difficult

• System is not optimized for iteration:
Map-Reduce for Data-Parallel ML
• Excellent for large data-parallel tasks!

MapReduce
- Feature Extraction
- Cross Validation
- Computing Sufficient Statistics

MPI/Pthreads
- Collaborative Filtering
- Graph Analytics
- Structured Prediction
- Clustering
Threads, Locks, & Messages

“low level parallel primitives”
Threads, Locks, and Messages

Graduate students repeatedly solve the same parallel design challenges:

– Implement and debug complex parallel system
– Tune for a specific parallel platform
– Six months later the conference paper contains:

“We implemented ____ in parallel.”

The resulting code:

– is difficult to maintain
– is difficult to extend

• couples learning model to parallel implementation
Addressing Graph-Parallel ML

• We need alternatives to Map-Reduce

Map Reduce

Feature Extraction

Cross Validation

Computing Sufficient Statistics

Pregel

Collaborative Filtering

Graph Analytics

Structured Prediction

Clustering
Pregel Abstraction

• User-defined **Vertex-Program** on each vertex
• Vertex-programs interact along edges in the **Graph**
 – Programs interact through Messages
• **Parallelism**: Multiple vertex programs run simultaneously
The Pregel Abstraction

Vertex-Programs communicate through messages

```java
void Pregel_PageRank(i, msgs) :
  
  // Receive all the messages
  float total = sum(m in msgs)

  // Update the rank of this vertex
  R[i] = \beta + (1-\beta)*total

  // Send Messages to neighbors
  foreach(j in out_neighbors[i]) :
    SendMsg(nbr, R[i] * w_{ij})
```

Pregel is Bulk Synchronous Parallel

Compute

Communicate

http://dl.acm.org/citation.cfm?id=1807184
Open Source Implementations

- Giraph: http://incubator.apache.org/giraph/
- Golden Orb: http://goldenorbos.org/
- Stanford GPS: http://infolab.stanford.edu/gps/

An asynchronous variant:

- GraphLab: http://graphlablab.org/
Tradeoffs of the BSP Model

• Pros:
 – Graph Parallel
 – Relatively easy to implement and reason about
 – Deterministic execution

• Cons:
 – User must architect the movement of information
 • Send the correct information in messages
 – Bulk synchronous abstraction inefficient
Curse of the Slow Job

Curse of the Slow Job

- Assuming runtime is drawn from an exponential distribution with mean 1.
Bulk synchronous parallel model provably inefficient for some graph-parallel tasks
Example: Loopy Belief Propagation (Loopy BP)

• Iteratively estimate the “beliefs” about vertices
 – Read in messages
 – Updates marginal estimate (belief)
 – Send updated out messages

• Repeat for all variables until convergence

Bulk Synchronous Loopy BP

- Often considered embarrassingly parallel
 - Associate processor with each vertex
 - Receive all messages
 - Update all beliefs
 - Send all messages

- Proposed by:
 - Brunton et al. CRV’06
 - Mendiburu et al. GECC’07
 - Kang, et al. LDMTA’10
 - ...
Sequential Computational Structure
Hidden Sequential Structure
Hidden **Sequential** Structure

- **Running Time:**

\[
\frac{2n \text{ Messages Calculations}}{p \text{ Processors}} \times (n \text{ Iterations to Converge}) = \frac{2n^2}{p}
\]

- Time for a single parallel iteration
- Number of Iterations
Optimal Sequential Algorithm

<table>
<thead>
<tr>
<th></th>
<th>Bulk Synchronous</th>
<th>Forward-Backward</th>
<th>Optimal Parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running Time</td>
<td>$\frac{2n^2}{p}$</td>
<td>$2n$</td>
<td>n</td>
</tr>
<tr>
<td>p <= 2n</td>
<td>$p = 1$</td>
<td>$p = 1$</td>
<td>$p = 2$</td>
</tr>
<tr>
<td>$2n^2/p$</td>
<td>$2n$</td>
<td>n</td>
<td></td>
</tr>
</tbody>
</table>

- **Bulk Synchronous**
 - Running Time: $\frac{2n^2}{p}$
 - Gap: $p \leq 2n$

- **Forward-Backward**
 - Running Time: $2n$
 - Gap: $p = 1$

- **Optimal Parallel**
 - Running Time: n
 - Gap: $p = 2$
The Splash Operation

• Generalize the optimal chain algorithm:

 to arbitrary cyclic graphs:

1) Grow a BFS Spanning tree with fixed size
2) Forward Pass computing all messages at each vertex
3) Backward Pass computing all messages at each vertex

Prioritize Computation

Challenge = Boundaries

Synthetic Noisy Image

Splash

Graphical Model

Vertex Updates

Algorithm identifies and focuses on hidden sequential structure
Comparison of Splash and Pregel Style Computation

Limitations of bulk synchronous model can lead to **provably** inefficient parallel algorithms
The Need for a New Abstraction

- Need: Asynchronous, Dynamic Parallel Computations

Data-Parallel
- Feature Extraction
- Cross Validation
- Computing Sufficient Statistics

Graph-Parallel
- BSP, e.g., Pregel
- Graphical Models (Gibbs Sampling, Belief Propagation, Variational Opt.)
- Collaborative Filtering
- Semi-Supervised Learning (Label Propagation, CoEM)
- Data-Mining (PageRank, Triangle Counting)

Map Reduce

BSP, e.g., Pregel

Carnegie Mellon
The GraphLab Goals

- Designed specifically for ML
 - Graph dependencies
 - Iterative
 - Asynchronous
 - Dynamic

- Simplifies design of parallel programs:
 - Abstract away hardware issues
 - Automatic data synchronization
 - Addresses multiple hardware architectures

Know how to solve ML problem on 1 machine

Efficient parallel predictions
Data Graph

Data associated with vertices and edges

Graph:
- Social Network

Vertex Data:
- User profile text
- Current interests estimates

Edge Data:
- Similarity weights
Updater Functions

User-defined program: applied to vertex transforms data in scope of vertex

\[
\text{pagerank}(i, \text{scope}) \{
\begin{array}{l}
\text{// Get Neighborhood data} \\
(R[i], w_{ij}, R[j]) \leftarrow \text{scope};
\end{array}
\]

Update function applied (asynchronously) in parallel until convergence

Many schedulers available to prioritize computation
The **scheduler** determines the order that vertices are updated.

The process repeats until the scheduler is empty.
Ensuring Race-Free Code

How much can computation overlap?
Need for Consistency?

Higher Throughput (#updates/sec)

No Consistency

Potentially Slower Convergence of ML
Consistency in Collaborative Filtering

GraphLab guarantees consistent updates

User-tunable consistency levels trades off parallelism & consistency

Netflix data, 8 cores
The GraphLab Framework

Graph Based
Data Representation

Update Functions
User Computation

Scheduler

Consistency Model
GraphLab vs. Pregel (BSP)

PageRank (25M Vertices, 355M Edges)

- 51% updated only once

Number of Updates vs. L1 Error and Num-Vertices vs. Updates graphs comparing GraphLab and Pregel.
<table>
<thead>
<tr>
<th></th>
<th>Number of CPUs</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadoop</td>
<td>95 Cores</td>
<td>7.5 hrs</td>
</tr>
<tr>
<td>GraphLab</td>
<td>16 Cores</td>
<td>30 min</td>
</tr>
<tr>
<td>Distributed GraphLab</td>
<td>32 EC2 machines</td>
<td>80 secs</td>
</tr>
</tbody>
</table>
The Cost of the Wrong Abstraction

Log-Scale!

GraphLab

Hadoop

<table>
<thead>
<tr>
<th>Runtime(s)</th>
<th>Cost($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10−1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td></td>
</tr>
</tbody>
</table>

Log-heap!
Thus far...

GraphLab1 provided exciting scaling performance

But...

We couldn’t scale up to Altavista Webgraph 2002
1.4B vertices, 6.7B edges
Natural Graphs
Assumptions of **Graph-Parallel Abstractions**

Idealized Structure
- *Small* neighborhoods
 - Low degree vertices
- Similar degree
- Easy to partition

Natural Graph
- *Large* Neighborhoods
 - High degree vertices
- *Power-Law* degree distribution
- *Difficult to partition*
Natural Graphs \rightarrow Power Law

Top 1% of vertices is adjacent to 53% of the edges!
High Degree Vertices are Common

“Social” People

Popular Movies

Hyper Parameters

Common Words

α

θ

z

w

B

LDA

Obama
Problem: High Degree Vertices Limit Parallelism

Edge information too large for single machine

Touches a large fraction of graph (GraphLab 1)

Produces many messages (Pregel)

Sequential Vertex-Updates

Asynchronous consistency requires heavy locking (GraphLab 1)

Synchronous consistency is prone to stragglers (Pregel)
Problem: High Degree Vertices \Rightarrow High Communication for Distributed Updates

Data transmitted across network $O(# \text{ cut edges})$

Natural graphs do not have low-cost balanced cuts

[Leskovec et al. 08, Lang 04]

Popular partitioning tools (Metis, Chaco,...) perform poorly

[Abou-Rjeili et al. 06]

Extremely slow and require substantial memory
Random Partitioning

- Both GraphLab1 and Pregel proposed Random (hashed) partitioning for Natural Graphs

For \(p \) Machines:

\[
\mathbb{E} \left[\frac{|\text{Edges Cut}|}{|E|} \right] = 1 - \frac{1}{p}
\]

10 Machines \(\rightarrow \) 90% of edges cut
100 Machines \(\rightarrow \) 99% of edges cut!
In Summary

GraphLab1 and Pregel are not well suited for natural graphs

- Poor performance on high-degree vertices
- Low Quality Partitioning
Distribute a single vertex-update

- Move computation to data
- Parallelize high-degree vertices

Vertex Partitioning

- Simple online approach, effectively partitions large power-law graphs
Factorized Vertex Updates

Split update into 3 phases

Parallel Sum

Gather

Apply(Δ)

Locally apply the accumulated Δ to vertex

Update neighbors

Data-parallel over edges

Data-parallel over edges
PageRank in GraphLab2

\[R[i] = \beta + (1 - \beta) \sum_{(j,i) \in E} w_{ji} R[j] \]

PageRankProgram(i)

- **Gather**(j \rightarrow i) : return \ w_{ji} * R[j]
- **sum**(a, b) : return a + b;
- **Apply**(i, \Sigma) : \ R[i] = \beta + (1 - \beta) * \Sigma
- **Scatter**(i \rightarrow j) :
 if (R[i] changes) then activate(j)
Distributed Execution of a GraphLab2 Vertex-Program

Gather

Apply

Scatter

Machine 1

Machine 2

Machine 3

Machine 4
Minimizing Communication in GraphLab2

Communication is linear in the number of machines each vertex spans

A vertex-cut minimizes machines each vertex spans

Percolation theory suggests that power law graphs have good vertex cuts. [Albert et al. 2000]
Minimizing Communication in GraphLab2: Vertex Cuts

A vertex-cut minimizes # machines per vertex

Percolation theory suggests Power Law graphs can be split by removing only a small set of vertices [Albert et al. 2000]

⇒ Small vertex cuts possible!
Constructing Vertex-Cuts

Goal: *Parallel graph partitioning on ingress*

GraphLab 2 provides three **simple** approaches:

- **Random Edge Placement**
 - Edges are placed randomly by each machine
 - Good theoretical guarantees

- **Greedy Edge Placement with Coordination**
 - Edges are placed using a shared objective
 - Better theoretical guarantees

- **Oblivious-Greedy Edge Placement**
 - Edges are placed using a local objective
Random Vertex-Cuts

• Randomly assign edges to machines

Machine 1

Machine 2

Machine 3

Balanced Cut

- Y Spans 3 Machines
- Z Spans 2 Machines
- Spans only 1 machine
Random Vertex Cuts vs Edge Cuts

Memory and Comm. Reduction w. Vertex Cuts

Number of Machines
Greedy Vertex-Cuts

• Place edges on machines which already have the vertices in that edge.
Greedy Vertex-Cuts

• **Derandomization**: Minimizes the expected number of machines spanned by each vertex.

• **Coordinated**
 – Maintain a shared placement history (DHT)
 – Slower but higher quality

• **Oblivious**
 – Operate only on local placement history
 – Faster but lower quality
Partitioning Performance

Twitter Graph: 41M vertices, 1.4B edges

Cost

Construction Time

Oblivious balances partition quality and partitioning time.
Beyond Random Vertex Cuts!

![Bar chart showing reduction in runtime for different methods: PageRank, Collaborative Filtering, and Shortest Path. The methods compared are Random, Oblivious, and Greedy.](image-url)
From the Abstraction to a System
Triangle Counting in Twitter Graph

Total: 34.8 Billion Triangles

40M Users
1.2B Edges

Hadoop
1536 Machines
423 Minutes

GraphLab
64 Machines, 1024 Cores
1.5 Minutes

Hadoop results from [Suri & Vassilvitskii '11]
LDA Performance

- All English language Wikipedia
 - 2.6M documents, 8.3M words, 500M tokens

- LDA state-of-the-art sampler (100 Machines)
 - *Alex Smola*: 150 Million tokens per Second

- GraphLab Sampler (64 cc2.8xlarge EC2 Nodes)
 - 100 Million Tokens per Second
 - Using only 200 Lines of code and 4 human hours
PageRank

40M Webpages, 1.4 Billion Links

Hadoop results from [Kang et al. '11]
Twister (in-memory MapReduce) [Ekanayake et al. ‘10]
How well does GraphLab scale?

Yahoo Altavista Web Graph (2002):
One of the largest publicly available webgraphs

1.4B Webpages, 6.6 Billion Links

11 Mins

1B links processed per second

30 lines of user code

1024 Cores (2048 HT)

4.4 TB RAM
GraphLab
Release 2.1
available now
Apache 2 License
GraphLab easily incorporates external toolkits
Automatically detects and builds external toolkits
Graph Processing

Extract knowledge from graph structure

- Find communities
- Identify important individuals
- Detect vulnerabilities

Algorithms
- Triangle Counting
- Pagerank
- K-Cores
- Shortest Path

Coming soon:
- Max-Flow
- Matching
- Connected Components
- Label propagation
Collaborative Filtering

Understanding Peoples

Shared Interests

- Target advertising
- Improve shopping experience

Algorithms

- ALS, Weighted ALS
- SGD, Biased SGD

Proposed:

- SVD++
- Sparse ALS
- Tensor Factorization
Graphical Models

Probabilistic analysis for correlated data.

Algorithms
- Loopy Belief Propagation
- Max Product LP

Coming soon:
- Gibbs Sampling
- Parameter Learning
- L_1 Structure Learning
- M^3 Net
- Kernel Belief Propagation

Improved predictions
Quantify uncertainty
Extract relationships
Structured Prediction

• Input:
 – Prior probability for each vertex
 – Edge List
 – Smoothing Parameter (e.g., 2.0)

<table>
<thead>
<tr>
<th>User Id</th>
<th>Pr(Conservative)</th>
<th>Pr(Not Conservative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

• Output: posterior

<table>
<thead>
<tr>
<th>User Id</th>
<th>Pr(Conservative)</th>
<th>Pr(Not Conservative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
<td>0.8</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Computer Vision (CloudCV)

Making sense of pictures.

- Recognizing people
- Medical imaging
- Enhancing images

Algorithms

- Image stitching
- Feature extraction

Coming soon:

- Person/object detectors
- Interactive segmentation
- Face recognition
Clustering

Identify groups of related data

- Group customer and products
- Community detection
- Identify outliers

Algorithms

- **K-Means++**
- Coming soon:
 - Structured EM
 - Hierarchical Clustering
 - Nonparametric *-Means
Topic Modeling

Extract meaning from raw text

- Improved search
- Summarize textual data
- Find related documents

Algorithms
- LDA Gibbs Sampler

Coming soon:
- CVBO for LDA
- LSA/LSI
- Correlated topic models
- Trending Topic Models
GraphChi: Going small with GraphLab

Solve huge problems on small or embedded devices?

Key: Exploit non-volatile memory (starting with SSDs and HDs)
GraphChi – disk-based GraphLab

Novel Parallel Sliding Windows algorithm

- Fast!
- Solves tasks as large as current distributed systems
- Minimizes disk seeks
 - Efficient on both SSD and hard-drive
- Multicore Asynchronous execution
Triangle Counting in Twitter Graph

40M Users
1.2B Edges

Total: 34.8 Billion Triangles

Hadoop
1536 Machines
423 Minutes

GraphChi
59 Minutes, 1 Mac Mini!

GraphLab
64 Machines, 1024 Cores
1.5 Minutes

Hadoop results from [Suri & Vassilvitskii '11]
Release 2.1 available now
http://graphlab.org
Documentation... Code... Tutorials... (more on the way)

GraphChi 0.1 available now
http://graphchi.org
Open Challenges
Dynamically Changing Graphs

• **Example:** *Social Networks*
 – New users → New Vertices
 – New Friends → New Edges

• How do you adaptively maintain computation:
 – Trigger computation with changes in the graph
 – Update “interest estimates” only where needed
 – Exploit asynchrony
 – Preserve consistency
Graph Partitioning

• How can you quickly place a large data-graph in a distributed environment:

• Edge separators fail on large power-law graphs
 – Social networks, Recommender Systems, NLP

• Constructing vertex separators at scale:
 – No large-scale tools!
 – How can you adapt the placement in changing graphs?
Graph Simplification for Computation

• Can you construct a “sub-graph” that can be used as a proxy for graph computation?

• See Paper:
 – *Filtering: a method for solving graph problems in MapReduce.*
 • http://research.google.com/pubs/pub37240.html
Concluding BIG Ideas

• Modeling Trend: Independent Data → Dependent Data
 – Extract more signal from noisy structured data
• Graphs model data dependencies
 – Captures locality and communication patterns
• Data-Parallel tools not well suited to Graph Parallel problems

• Compared several Graph Parallel Tools:
 – Pregel / BSP Models:
 • Easy to Build, Deterministic
 • Suffers from several key inefficiencies
 – GraphLab:
 • Fast, efficient, and expressive
 • Introduces non-determinism
 – GraphLab2:
 • Addresses the challenges of computation on Power-Law graphs

• Open Challenges: Enormous Industrial Interest
Fault Tolerance
Checkpoint Construction

Pregel (BSP)
- Compute
- Communicate

GraphLab

Synchronous Checkpoint Construction

Asynchronous Checkpoint Construction
Checkpoint Interval

• Tradeoff:
 – **Short** T_i: Checkpoints become too costly
 – **Long** T_i: Failures become too costly
Optimal Checkpoint Intervals

• Construct a first order approximation:

\[T_i \approx \sqrt{2T_c T_{mtbf}} \]

• Example:
 – 64 machines with a per machine MTBF of 1 year
 • \(T_{mtbf} = 1 \text{ year} / 64 \approx 130 \text{ Hours} \)
 – \(T_c = \) of 4 minutes
 – \(T_i \approx \) of 4 hours

From: http://dl.acm.org/citation.cfm?id=361115