L

Apache Pig

Jonathan Coveney, @jco
Data Systems Engineer, Twitter

Why do we need Pig?

* Writing native Map/Reduce is hard
— Difficult to make abstractions
— Extremely verbose

* 400 lines of Java becomes < 30 lines of Pig

— Joins are very difficult
* A big motivator for Pig

— Chaining together M/R jobs is tedious
— Decouples logic from optimization

* Optimize Pig and everyone benefits

¢ Basically, everything about Java M/R is painful

Understanding a basic Pig script

This is a relation

Loads a file into a relation, with a
(NOT a variable)

defined schema

students = LOAD 'students.txt' as (first:chararray, last:chararray, age:int, dept:chararray);

Filters out all rows that
don’t fulfill the predicate

-» students_filtered = FILTER students BY age >= 20;

Loads another file
-» dept_info = LOAD ‘dept_info.txt’ as (dept:chararray, credits:int);

Equi-joins two relations on

the dept column
> students_dept = JOIN students BY dept, dept_info BY dept;

Chooses what columns we care

-» students_proj = FOREACH students_dept GENERATE about and renames them

students::first as first, students::last as last,
students::dept as dept, dept_info::credits as credits;

’are all relations! They represent rows of data,
row organized into columns

Basic Pig script (cont)

This makes a jar of User Defined
Functions (UDFs) available for use
register ClassesUdfs.jar;

Adds a column the the relation,
the result of using a UDF

students_hours = FOREACH students_proj GENERATE *,
CalculateSemestersFromCredits(credits) as semesters;
Globally orders relation by the
semesters column, in descending order

students_ordered = ORDER students_hours BY semesters DESC;

Stores the relation using a custom store function
(could even store to a database)

STORE students_ordered INTO ‘students_hours’ USING CustomStudentsStoreFunc();

.

An even simpler example: Word count

* Can’t have a tutorial on anything Hadoop
related without word count

text = LOAD 'text' USING TextLoader(); <~ Loads each line as one column
tokens = FOREACH text GENERATE FLATTEN(TOKENIZE(SO)) as word;

wordcount = FOREACH (GROUP tokens BY word) GENERATE
group as word,

COUNT _STAR($1) as ct;

What Pig can do for you

What is Pig?

* Pigis a scripting language
— No compiler
— Rapid prototyping
— Command line prompt (grunt shell)
* Pigis a domain specific language
— No control flow (no if/then/else)

— Specific to data flows
* Not for writing ray tracers
* For the distribution of a pre-existing ray tracer

What ISN’T Pig?

* A general framework for all distributed
computation

— Pig is MapReduce! Just easier

* A general purpose language
— No scope
— Minimal “variable” support
— No control flow

What CAN Pig do?

Ad hoc analysis

Move and transform data (ETL)
— Good integration with many systems

Build regular reports
Machine learning

...all on Terabytes and Petabytes of data!

What CAN’T Pig do?

* [terative ML algorithms
— Graph algorithms are generally slow

* Transcend Hadoop
— Pig is still Hadoop
* Algorithms that converge

— Without control flow can’t check convergence
— PigServer (Jython/Java) gives some control flow

What are my other options?

e Hive (SQL)
— Pros
* Leverages well-known syntax
* JDBC means integration is easy
— Cons

* Complex transformations can be unwieldy
* Less fine grained control

What are my other options? (cont)

e Cascading (Java API)

— Various DSLs
 Scalding (Scala API)
e Cascalog (Clojure API)
— Pros

* All one language
* The DSLs make Cascading simpler and more powerful
* Easier to make converging algorithms

— Cons
* No optimization
 Alower-level API

The Pig Object Model

Relations

 Fundamental building block
* Analogous to a table, not a variable

students = load 'students.txt' as (first:chararray, last:chararray, age:int,
dept:¢hararray);

Defines a relation

first last age major

Willia Cracknell 18 CS
Francesco Corraro 21 English
Lino Feddes 22 History

. . Wes Knill 23 EE
A relatlon, as It Ellyn Meyerhoefer 18 English
appears in Excel Warner Caminita 24 Psych
Lucius Orlosky 20 History

Del Graefe 20 CS

Douglass Adelizzi 23 CS

Lesley Kellywood 20 Biology

Loading a file

e Save file as tab delimited text without
headings

* Boot up Pig

S bin/pig —x local

2012-08-15 14:29:04,968 [main] INFO org.apache.pig.Main - Apache Pig version 0.11.0-SNAPSHOT (r1373633) compiled Aug 15 2012,
14:20:59

2012-08-15 14:29:04,968 [main] INFO org.apache.pig.Main - Logging error messages to: /Users/jcoveney/workspace/berkeley pig/
pig_1345066144966.log

2012-08-15 14:29:04,983 [main] INFO org.apache.pig.impl.util.Utils - Default bootup file /Users/jcoveney/.pigbootup not found
2012-08-15 14:29:05,138 [main] INFO org.apache.pig.backend.hadoop.executionengine.HExecutionEngine - Connecting to hadoop file
system at: file:///

grunt> students = LOAD 'students.txt’ USING PigStorage(‘\t’);

grunt> DUMP students;

A detour: firing up Pig

Signifies local mode
4 The version of Pig currently running

S bin/pig —x local

2012-08-15 14:29:04,968 [main] INFOl'org.apache.pig.Main -

Apache Pig version 0.11.0-SNAPSHOT (r1373633) compiled Aug 15 2012, 14:20:59
2012-08-15 14:29:04,968 [main] INFO org.apache.pig.Main - Logging error messages to:
/Users/jcoveney/workspace/berkeley pig/pig_1345066144966.log
2012-08-15 14:29:04,983 [main] INFO org.apache.pig.img!.util.Utils - Default bootup file /
Users/jcoveney/.pigbootup not found FT

2012-08-15 14:29:05,138 [main] INFO Errors will be logged here

org.apache.pig.backend.hadoop.executionengine.HExecutionEngine - Connecting to hadoop
file system at:/file:/// | ¥~ Means we’re working on local files

* Local mode is great for iterating quickly
— Much faster than a cluster

Loading data

Declares the relation for the data USING specifies the function

l that will load the data
v Refers to a Java function
grunt> students|=|LOAD 'students.txt’ USINGHPigStorage(’\t’#— which knows how to load
A Sets delimiter

DUMP keyword streams Loads the data in this file
the relation to the console

Output: 's th " | flel
(Willia,Cracknell, 18,CS) It's the same as the excel file:
(Francesco,Corraro,21,English) first last 296 major
(Lino,Feddes,22,History) — Wilia Cracknel 18 Cs
. Francesco Corraro 21 English
(Wes,Knill,23,EE) Lino Feddes 22 History
(Ellyn,Meyerhoefer,18,English) Wes Knill 23 EE
.. Ellyn Meyerhoefer 18 English
(Warner,Caminita,24,Psych) Warner Caminita 24 Psych
(Lucius,Orlosky,20,History) '-“Sé‘lls %’r'gzg gg H'(S:tgry
(Del,Graefe,20,CS) Douglass =~ Adelizzi 23 CS
(DOUgIaSS,AdeliZZi,23,CS) Lesley Kellywood 20 Biology

yey,KeIIywood,ZO,BioIogy) «— EachrowisaTuple

Projection (aka FOREACH)

Here we define what each row

students = LOAD 'Students.txt’; in the new relation will be
pruned = FOREACH students GENERATE SO, $2;

dump pruned;

Signifies the relation We can refer to
to transform columns positionally

* Foreach means “do something on every row in
a relation”

* Creates a new relation

* |In this example, pruned is a new relation
whose columns will be first name and age

* With schemas, can also use column aliases

Schemas and types

* Schema-less analysis is useful
— Many data sources don’t have clear types

* But schemas are also very useful
— Ensuring correctness

— Aiding optimization

Second half defines expected schema
students = LOAD ‘students.txt’

'as (first:chararray, last:chararray, age:int, dept:chararray);
The first half stays the same

* Schema gives an alias and type to the columns

— Absent columns will be made null
— Extra columns will be thrown out

We have the types, now use them!

* This does the same as the previous example:

students = LOAD ‘students.txt’ as (first:chararray, last:chararray, age:int, dept:chararray);
pruned = FOREACH students GENERATE first, age;
DUMP pruned;

 DESCRIBE prints the schema of a relation

grunt> describe pruned;
pruned:/{first: chararray,last: chararray}

The relation being described The schema of the relation

Types and Schemas

Schemas vs. Types

* Schemas
— A description of the types present
— Used to help maintain correctness
— Generally not enforced once script is run
* Types
— Describes the data present in a column
— Generally parallel Java types

Type Overview

* Pig has a nested object model

— Nested types

— Complex objects can contain other object
* Pig primitives mirror Java primitives

— String, Int, Long, Float, Double

— DataByteArray wraps a byte[]

— Working to add native DateTime support, and
more!

Complex types: Tuples

Every row in a relation is a Tuple
Allows random access

Wraps ArrayList<Object>

Must fit in memory

Can have a Schema, but is not enforced
— Potential for optimization

Complex types: Bags

Pig’s only spillable data structure
— Full structure does not have to fit in memory

Two key operations
— Add a Tuple

— Iterate over Tuples

No random access!

No order guarantees

The object version of a relation

— Every row is a Tuple

Complex types: Maps

 Wraps HashMap<String, Object>
— Keys must be Strings

* Must fit in memory
e Can be cumbersome to use

— Value type poorly understood in script

More operators!

Filter

* A predicate is evaluated for each row
— If false, the row is thrown out

students = LOAD ‘students.txt’ as (first:chararray, last:chararray, age:int, dept:chararray);
under_20 = FILTER students BY age < 20;

(Willia,Cracknell,18,CS)

(Ellyn,Meyerhoefer,18,English)

e Supports complicated predicates
— Boolean logic
— Regular expressions

— See Pig documentation for more

Grouping

* Abstractly, GROUPing creates a relation with
unique keys, and the associated rows

* Example: how many people in our data set are
in each department?

students = LOAD ‘students.txt’ as (first:chararray, last:chararray, age:int, dept:chararray);
students_grouped = GROUP students BY dept;«— Specifies the key to group on
DESCRIBE students_grouped; First column in post-group relation is always named

“group,” and is identical to the group key. Relation
students_grouped: {group: chararray,(_ has one row per unique group key value

students: {(first: chararray,last: chararray,age: int,dept: chararray)}}

|

Second column is always named
r grouped relation, and is a Bag

Grouping gives the rows corresponding to the
key, so the schema of this Bag is the same as the
relation we grouped (ie students)

Visualizing the group

(CS,{(Willia,Cracknell,18,CS),(Del,Graefe,20,CS),(Douglass,Adelizzi,23,CS)})
(EE,{(Wes,Knill,23,EE)})
(Psych,{(Warner,Caminita,24,Psych)})
(Biology,{(Lesley,Kellywood,20,Biology)})
One row per (English,{(Francesco,Corraro,21,English),(Ellyn,Meyerhoefer,18,English)})
unique key —» (History{(Lino,Feddes,22,History),(Lucius,Orlosky,20,History)})

¢

Every row
associated with
that unique key

An alternate visualization

* Bags contain rows, so let’s print it as such

students_grouped: students:
({(Willia,Cracknell,18,CS), (Willia,Cracknell,18,CS)
(Del,Graefe,20,CS), (Del,Graefe,20,CS)
(Douglass,Adelizzi,23,CS)}) (Douglass,Adelizzi,23,CS)
({(Wes,Knill,23,EE)}) (Wes,Knill,23,EE)
({(Warner,Caminita,24,Psych)}) (Warner,Caminita,24,Psych)
({(Lesley,Kellywood,20,Biology)}) (Lesley,Kellywood,20,Biology)
({(Francesco,Corraro,21,English), (Francesco,Corraro,21,English)
(Ellyn,Meyerhoefer,18,English)}) (Ellyn,Meyerhoefer,18,English)
({(Lino,Feddes,22,History), (Lino,Feddes,22,History)
(Lucius,Orlosky,20,History)}) (Lucius,Orlosky,20,History)

They are the same!

Using GROUP: an example

* Goal: what % does each age group make up of
the total?

students = LOAD 'students.txt' as (first:chararray, last:chararray, age:int, dept:chararray);
students_grp = GROUP students BY age;
students_ct = FOREACH students_grp GENERATE group as age, COUNT_STAR(students) as ct;
students_total = FOREACH (GROUP students_ct ALL) generate SUM(students_ct.ct) as total;
students_proj = FOREACH students_join GENERATE

students_ct::age as age,

(double)students_ct::ct / (long)students_total.total as pct;

(18,0.2)
(20,0.3)
(21,0.1) It works! But how?
(22,0.1)
(23,0.2)
(24,0.1)

Understanding GROUP

students = LOAD 'students.txt' as (first:chararray, last:chararray, age:int, dept:chararray);

Column “group” is

students_grp = GROUP students BY agexwfy we group on

students_ct = FOREACH stu

dents_grp GENERATE group as age, COUNT_STAR(students) as ct;

-

Transformations can be nested

¥

students_total = FOREACH

(GROUP students_ct ALL)

GENERATE SUIV1(students_ct.ct} as total; T

4 A

SUM UDF takes a Bag This syntax returns a
and returns the sum Bag with just the

of the contents specifie

students_ct::age as age,

A
COUNT _STAR gives us the

number of elements in the Bag
“students,” which is the number
of rows with the same key

ALL key means resulting relation will
be one row, the group column will be

d column “all,” and the second column will be
every row in original relation

students_proj = FOREACH students_join GENERATE

(double)students_ct::ct|/

(long)students_total.total as pct;

4

A

ows Java’s math, so we This is a “scalar projection” of a relation. If a relation
r a decimal percent has one row with one value, we can cast it to that value.

Groups: a retrospective

* Grouping does not change the data
— Reorganizes it based on the given key
— Can group on multiple keys

* First column is always called group

— A compound group key will be a Tuple
(“group”)whose elements are the keys

e Second column is a Bag

— Name is the grouped relation
— Contains every row associated with key

FLATTENIngG

* Flatten is the opposite of group
 Turns Tuples into columns
* Turns Bags into rows

Flattening Tuples

students = LOAD 'students.txt' as (first:chararray, last:chararray, age:int, dept:chararray);
students_grouped = GROUP students BY (age, dept);«— We are grouping on multiple keys
students_ct = FOREACH students_grouped GENERATE group, COUNT(students) as ct;

()
DESCRIBE students_ct; Irrespective of the number of group
students_ct: {group: (age: int,dept: chararray),ct:long} keys, there is always one first

\ column, and it is called “group”

dump students_ct;

This is the schema of a Tuple.

Eg:'gigl%;\)_l) Lhi;is hIO}cA’/ a Tuple Io?clfcsf; students_ct has TWO columns,
atten let’s us un-nest the L

! ! one of which is a Tuple

((20,CS),1) columns it contains P

((20,Biology),1)

((20,History),1)
((21,English),1)
((22,History),1)
((23,CS),1)

3,EE),1)
24,Psych),1)

Flattening Tuples (cont)

students = LOAD 'students.txt' as (first:chararray, last:chararray, age:int, dept:chararray);

students_grouped = GROUP students BY (age, dept);

students_ct = FOREACH students_grouped GENERATE FLATTEN(group) as (age, dept),

COUN'I’Fstudents) as ct; 1‘

DESCRIBE students_ct;
students_ct: {age: int,dept: chararray, ct:long}

l

compound key

dump students_ct; The columns have been
(18,CS{#)—— The values are the brought down a level.
18,English,1) same, but now students_ct now has
(20,CS,1) there are two three columns

(20,Biology,1) columns instead of
(20,History,1) a Tuple
(21,English,1)

(22,History,1)

(23,CS,1)

3,EE,1)
4,Psych,1)

Flatten un-nests the The same re-aliasing

statement as before
works when working
with Tuples

Flattening Bags

* Syntax is the same as Flattening Tuples, but
the idea is different

* Tuples contain columns, thus flattening a
Tuple turns one column into many columns

* Bags contain rows, so flattening a Bag turns
one row into many rows

Returning to an earlier example

students = LOAD ‘students.txt’ as (first:chararray, last:chararray, age:int,
dept:chararray);
students_grouped = GROUP students BY dept;

gwggmgzg%b p=eIé(:)REACH students_grou&aggnEEIQ{ERATE students;

({(Willia,Cracknell,18,CS), (Willia,Cracknell,18,CS)
(Del,Graefe,20,CS), (Del,Graefe,20,CS)
(Douglass,Adelizzi,23,CS)}) (Douglass,Adelizzi,23,CS)

({(Wes,Knill,23,EE)}) (Wes,Knill,23,EE)

({(Warner,Caminita,24,Psych)}) (Warner,Caminita,24,Psych)

({(Lesley,Kellywood,20,Biology)}) (Lesley,Kellywood,20,Biology)

({(Francesco,Corraro,21,English), (Francesco,Corraro,21,English)
(Ellyn,Meyerhoefer,18,English)}) (Ellyn,Meyerhoefer,18,English)

({(Lino,Feddes,22,History), (Lino,Feddes,22,History)
(Lucius,Orlosky,20,History)}) (Lucius,Orlosky,20,History)

Data is the same, just with different
nesting. On the left, the rows are
divided into different Bags.

Flattening Bags (cont)

* The schema indicates what is going on

students = LOAD ‘students.txt’ as (first:chararray, last:chararray, age:int,

dept:chararray);

DESCRIBE students;

Notice that the two
«— schemas are basically the

PosStuaentsifirsti ghanarraylast-charairapage: int,dept: chararray} same, except in the

DESCRIBE students_proj;

students_grouped = GROUP students BY dept;
students_proj = FOREACH students_grouped GENERATE students; contained inside of a Bag

second case the rows are

|

students_proj: {students: {(first: chararray,last: chararray,age: int,dept: chararray)}}

DESCRIBE students_flatten;

students_flatten = FOREACH students_proj GENERATE FLATTEN(students);

int,students::dept: chararray}

-»students_flatten: {students::first: chararray,students::last: chararray,students::age:

* Group goes from a flat structure to a nested one

* Flatten goes from a nested structure to a flat one

So let’s flatten the Bag already

* Now that we’ve seen grouping, there’s a
useful operation

students = LOAD ‘students.txt’ as (first:chararray, last:chararray, age:int,
dept:chararray);

students_grouped = GROUP students BY dept;
students_proj = FOREACH students_grouped GENERATE
DUMP students_prdjLATTEN(students) as (first, lést, age, dept);
(Willia,Cracknell,18,CS)
(Del,Graefe,20,CS)
(Douglass,Adelizzi,23,CS)
(Wes,Knill,23,EE)
(Warner,Caminita,24,Psych)
(Lesley,Kellywood,20,Biology)
(Francesco,Corraro,21,English)
(Ellyn,Meyerhoefer,18,English)
(Lino,Feddes,22,History)
(Cucius,Orlosky,20,History)

Same re-aliasing statement as before
works with the rows resulting from
flattened Bags

It worked! We have the original rows

Fun with flattens

* The GROUP example can be done with flattens

students = LOAD 'students.txt' as (first:chararray, last:chararray, age:int,
dept:chararray);

students_grp = GROUP students BY age;

students_ct = FOREACH students_grp GENERATE
group as age,
COUNT _STAR(students) as ct;

students_total = FOREACH (GROUP student$|azttAbk)0GENERATIEINAl rows
FLATTEN(students_ct.(age, ct)), Aggregates the ct values
SUM(students_ct.ct) as total;

students_proj = FOREACH stuggntstofal GENERAVEd scalar projection

age,
(double) ct / total as pct;

Joins

* A big motivator for Pig easier joins

 Compares relations using a given key

e QOutput all combinations of rows with equal keys
e See appendix for more variations

dept_info = LOAD ‘dept_info.txt" as (dept:chararray, credits:int);
DUMP dept_info;

(CS,1000) Let’s introduce a new data source related to our
(EE,1000) previous one. This one connects a department to its

(Psych,10) required credits
(Biology,20)

(English,1)
(History,3)

Joins (cont)

* How many credits does each student need?

students = LOAD 'students.txt' as (first:chararray, last:chararray, age:int, dept:chararray);
dept_info = LOAD ‘dept_info.txt" as (dept:chararray, credits:int);

students_dept = JOIN students/BY dept, dept_info BY dept; This signifies the join key

(the keys whose equality
describe students_dept; will be tested)

students_dept: {students::first: chararray,students::last: chararray,students::age:
int,students::dept: chararray,dept_info::dept: chararray,dept_info::credits: int}

* Joined schema is concatenation of joined
relations’ schemas

* Relation name appended to aliases in case of
ambiguity

— In this case, there are two “dept” aliases

Order by

* Order by globally sorts a relation on a key (or
set of keys)

* Global sort not guaranteed to be preserved
through other transformations

e A store after a global sort will result in one or
more globally sorted part files

students = LOAD 'students.txt' as (first:chararray, last:chararray, age:int, dept:chararray);
students_by age = ORDER students BY age ASC;

store students_by age into 'students_by age'; This output file will be

globally sorted by age in
ascending order

Extending Pig: UDFs

Extending Pig

 UDF’s, coupled with Pig’s object model, allow
for extensive transformation and analysis

UDF must be compiled
and packaged into a jar,
then registered.

|

register JarContainingUdf.jar

students = LOAD 'students.txt' as (first:chararray, last:chararray, age:int, dept:chararray);
students_names = FOREACH students GENERATE|myudfs.ToUpperCase(first);

UDF is invoked by name, including package (case-sensitive!)

What’s a UDF?

* A User Defined Function (UDF) is a java

function implementing EvalFunc<T>, and can
be used in a Pig script

— Additional support for functions in Jython, JRuby,
Groovy, and Rhino (experimental)

* Much of the core Pig functionality is actually
implemented in UDFs
— COUNT in the previous example

— Useful for learning how to implement your own

— src/org/apache/pig/builtin has many examples

Types of UDFs

EvalFunc<T>

— Simple, one to one functions
Accumulator<T>

— Many to one

— Left associative, NOT commutative
Algebraic<T>

— Many to one

— Associative, commutative

— Makes use of combiners

All UDFs must returns Pig types
— Even intermediate stages

EvalFunc<T>

Simplest kind of UDF
Only need to implement an “exec” function

Not ideal for “many to one” functions that

vastly reduce amount of data (such as SUM or
COUNT)

— In these cases, Algebraics are superior

src/org/apache/pig/builtin/TOKENIZE.java is a
nontrivial example

A basic UDF

package myudfs; Type being returned (must be a Pig type)
import org.apache.EvalFunc; V
public class ToUpperCase extends EvalFunc<String> {

public String exec(Tuple inputjt——-—nput is always a Tuple (ie a row). Thus,

String inp =|(String) input.get(0); UDF input is also untyped
return inp.toUpperCase(); T

} Input Tuple is untyped, so we must cast
entries ourselves.

What happens when you run a
script?

The DAG

* Pig script results in 1+ MapReduce jobs

* Graph of dependencies between these jobs is

a directed acyclic graph (DAG)

— http://www.github.com/twitter/ambrose is a
great tool for visualizing a Pig script’s DAG

* DAG is a result of Map/Reduce barriers

What is a Map/Reduce barrier

* A Map/Reduce barrier is a part of a script that
forces a reduce stage

— Some scripts can be done with just mappers

students = LOAD ‘students.txt’ as (first:chararray, last:chararray, age:int,
dept:chararray);
students_filtered = FILTER students BY age >= 20;

students_proj = FOREACH udents ?E ERATE last, dé
— But most WI nee ull MapReduce cycle

students = LOAD ‘students.txt’ as (first:chararray, last:chararray, age:int,
dept:chararray);

students_grouped = GROUP students BY dept;

students_proj = FOREACH students_grouped GENERATE group, COUNT(students);

— The group is the difference, a “map reduce
barrier” which requires a reduce step

M/R implications of operators

* What will cause a map/reduce job?
— GROUP and COGROUP
— JOIN

* Excluding replicated join (see Appendix)
— CROSS

* To be avoided unless you are absolutely certain
* Potential for huge explosion in data

— ORDER
— DISTINCT

 What will cause multiple map reduce jobs?
— Multiple uses of the above operations
— Forking code paths

Making it more concrete

* First step is identifying the M/R barriers

Job #
students = LOAD 'students.txt' as (first:chararray, last:chararray, age:int, dept:chararray);

1 students_grp = GROUP students BY dept;
students_ct = FOREACH students_grp GENERATE group as dept, COUNT(students) as ct;
students_grp2 = GROUP students_ct BY ct;
2 students_ct2 = FOREACH students_grp2 GENERATE group, COUNT(students_ct);
STORE students_ct2 INTO ‘histogram’;
dept_ct = FILTER student_ct BY ct > 2;
students_big_dept = JOIN students BY dept, dept_ct BY dept;
students_big dept_proj = FOREACH students_big dept GENERATE
students::first as first, students::last as last, students::age as age, students::dept as dept;
STORE students_big _dept_proj INTO ‘students_in_big_departments’;

A DAG example

Job 1
Map LOAD ‘students.txt’

Reduce GENERATE first, last, age, dept; GENERATE group, COUNT(students_ct)
STORE students_big dept_proj STORE students_ct2

Job 2 Job 3

.

Life lessons

How to make good Pig scripts

* Project early, project often
— Always better to be more explicit
— Reduces the amount of information being shuffled

* Explicitly name things

— Pig is smart about it’s schemas, but making things
explicit will make scripts much more readable

How to make good Pig scripts (cont)

* Don’t reuse relation names
— Makes troubleshooting failing M/R jobs harder

* For UDFs, implement Accumulator and
Algebraic if possible
— Unless it is just a simple one to one EvalFunc

* General life lesson: nobody likes unreadable,
terse code, no matter how powerful the
language. Be explicit!

Getting help from the Pig community

 Read the docs! http://pig.apache.org has
more formal information on all of this

 There are a bunch of Pig experts that want to help
you: user@pig.apache.org
* When having issues, please include the script
— Ideally, a smaller script that isolates your error

— Example data even more ideal

* |f you found a bug, file a bug report!
— https://issues.apache.org/jira/browse/PIG

Appendix

More on projections

* Projection reduces the amount of data being
processed

— Especially important between map and reduce
stages when data goes over the network

In this case, all of the columns in
relationl and relation2 would be s
across the network! Pig tries to
optimize this, but sometimes fails.
Remember: be explicit!

rell = LOAD ‘datal.txt’ as (a, b, c, ... lots of columns ..);
rel2 = LOAD ‘data2.txt’ as (a, ... lots of columns ..);

rel3 = JOIN rell BY a, rel2 BY a;

rel4 = FOREACH rel3 GENERATE rell::a, rell::b, rell::c;

rell = LOAD ‘datal.txt’ as (a, b, c, ... lots of columns ..);

rell_proj = FOREACH rell GENERATE a, b, c; This ensures extra data won’t
rel2 = LOAD ‘data2.txt’ as (a, ... lots of columns ..); be shuffled, and makes your
rel2_proj = FOREACH rel2 GENERATE a; code more explicit

rel3 = JOIN rell_proj BY a, rel2_proj BY a;
rel4 = FOREACH rel3 GENERATE rell_proj::a, rell_proj::b, rell_proj::c;

Scalar projection

e All interaction and transformation is in Pig is
done on relations

* Sometimes, we want access to an aggregate

— Scalar projection allow us to use intermediate
aggregate results in a script

students = LOAD 'students.txt';
count = FOREACH (GROUP students ALL) GENERATE COUNT _STAR(S1) as ct;

(Incidentally, this is the pattern This will make the column ct in
for counting a relation) count available as a long
_ If the relation has more than
proj = foreach students generate *, (long) count.ct; one row or the specified

column isn’t of the right type, it
will error out

More on SUM, COUNT, COUNT STAR

* In general, SUM, COUNT, and other
aggregates implicitly work on the first column

rell = LOAD ‘datal.txt’ as (x:int, y:int, z:int);
rel2 = GROUP rell ALL;

rel3 = FOREACH rel2 GENERATE SUM(rell); € ' These will be the same
rel4 = FOREACH rel2 GENERATE SUM(rel1.x); €
rel5 = FOREACH rel2 GENERATE SUM(rell.y); >— These won’t

* COUNT counts only non-null fields
e COUNT STAR counts all fields

rel6 = FOREACH rel2 GENERATE COUNT(rel1); This counts only non-
rel7 = FOREACH rel2 GENERATE COUNT_STAR(rel1); ~ Null values ofx

Whereas this counts the number of
values in the relation

More on sorting

Sorting is a global operation, but can be
distributed

Must approximate distribution of the sort key

Imagine evenly distributed data between 1
and 100. With 10 reducers, can send 1-10 to
computer 1, 11-20 to computer 2, and so on.
In this way, the computation is distributed but
the sort is global

Pig inserts a sorting job before an order by to
estimate the key distribution

More on spilling

* Spilling means that, at any time, a data
structure can be asked to write itself to disk

* |In Pig, there is a memory usage threshold

e This is why you can only add to Bags, or
iterate on them

— Adding could force a spill to disk

— |terating can mean having to go to disk for the
contents

Flattening multiple Bags

* The result from multiple flatten statements
will be crossed

— To only select a few columns in a Bag, syntax is
bag alias.(coll, col2)

students = LOAD ‘students.txt’ as (first:chararray, last:chararray, age:int,
dept:chararray);
students_grouped = GROUP students BY dept;

studants 1Ri0hre FROREACEsHedeNEsg B HReshGRNERATE FLATTEN(students. first),
running them to understand what’s going on FLATTEN(students.age);

students = LOAD ‘students.txt’ as (first:chararray, last:chararray, age:int,
dept:chararray);
students_grouped = GROUP students BY dept;

students_proj = FOREACH students_grouped GE%%?'%T&ELpArUpEe'\I! stg{/i gtcsﬁgﬁ;)rgg, aage);

specific set of columns from a bag

Nested foreach

* An advanced, but extremely powerful use of

FOREACH let’s a script do more analysis on the
reducers

* Imagine we wanted the distinct number of
ages per department

students = LOAD ‘students.txt’ as (first:chararray, last:chararray, age:int,
dept:chararray);
students_grouped = GROUP students BY deptje— Curly braces denote nested block

ique_ages = FOREACH students_grouped { o
rdst = DISTINCT students.age; Within the nested block can use a

GENERATE group as dept, FLATTEN(dst) as age; SuPset of Pig commands (FILTER,
DISTINCT, ORDER BY) to manipulate

the bag of rows associated with the
group key

Th%s creates a Bag, dst, which is the
diStinct of the Bag students.age

Nested foreach: be careful!

Is very useful, but since computation is done
in memory, can blow up

students = LOAD ‘students.txt’ as (first:chararray, last:chararray, age:int,
dept:chararray);
students_grouped = GROUP students BY dept;
unique_ages = FOREACH students_grouped {
dst = DISTINCT students.age;

GENERATE group as dept, FLATTEN(dst) as age;
IS the same as..

students = LOAD ‘students.txt’ as (first:chararray, last:chararray, age:int,
dept:chararray);
students_dst = FOREACH (GROUP students BY (dept, age))
GENERATE FLATTEN(group) as (dept, age);
unique_ages = FOREACH (GROUP students_dst BY dept)

ENERATE dept, FLATTEN(S1.
Tﬁe latter sc eqt%er ‘chA' (>1.age) as age;

Slower, requiring 2 MR jobs

Join optimizations

Pig has three join optimizations. Using them can
potentially make jobs run MUCH faster

Replicated join

—a =join rell by x, rel2 by x using ‘replicated’;
Skewed join

—a =joinrell by x, rel2 by x using ‘skewed’;
Merge join

— a =join rell by x, rel2 by x using ‘merge’;

Replicated join

e Can be used when:

— Every relation besides the left-most relation can
fitin memory

* Will invoke a map-side join

— Will load all other relations into memory in the
mapper and do the join in place

* Where applicable, massive resources savings

Skewed join

e Useful when one of the relations being joined
has a key which dominates

— Web logs, for example, often have a logged out
user id which can be a large % of the keys

 The algorithm first samples the key

distribution, and then replicate the most
popular keys

— Some overhead, but worth it in cases of bad skew

* Only works if there is skew in one relation

— If both relations have skew, the join degenerates
to a cross, which is unavoidable

Merge join

* This is useful when you have two relations
that are already ordered

— Cutting edge let’s you put an “order by” before
the merge join

 Will index the blocks that correspond to the
relations, then will do a traditional merge
algorithm

* Huge saving when applicable

Tying it to Hadoop

So what’s actually going on?

* So now we can write a script, but we haven’t

really talked about how Pig executes a script
“under the hood”

* Pig puts together a Map/Reduce job based on
the script that you give it

What happens when run a script?

First, Pig parses your script using ANTLR

The parser creates an intermediate
representation (AST)

The AST is converted to a Logical Plan

The Logical Plan is optimized, then convert to
a Physical Plan

The Physical Plan is optimized, then converted
to a series of Map/Reduce jobs

Wait...what?

Layers of abstractions are very useful for
performing optimizations at various levels

Logical Plan

— High level description of the computation

Physical Plan
— Pipeline that performs the computation

Map/Reduce Job

— Graph of jobs that actually run on the cluster

Logical Plan

* High level description of the data flow

* Describes the computation that will be done,
without implementation

* Can be optimized

— Column pruning
* Throws out any unused columns

— Filter push-down

* Push filters as high as possible in order to reduce data
being processed and shuffled

Physical plan

* Physical description of the computation

* Creates a usable pipeline
— Pipeline usable independent of M/R

— Could use this pipeline and target other
processing frameworks

* This stage can also be optimized

— In memory aggregation instead of combiners

MapReduce plan

* The logical and physical plans are ideally
divorced from the details of running on
Hadoop

— This is not always the case, but it’s close

* MRCompiler breaks the physical plan into a
DAG of M/R jobs

* Can be optimized as well
— Combining multiple M/R jobs into one

How do | see the plans?

* Pigs “explain <relation>" will print the three
plans that Pig generates

— Extremely useful for debugging

— Can be a bit advanced, beyond scope of this
presentation

— Pig listserv can be very helpful

Advanced UDFs

Accumulator<T>

 Used when the input is a large bag, but order
matters

— Allows you to work on the bag incrementally, can be
much more memory efficient

* Difference between Algebraic UDFs is generally
that you need to work on the data in a given
order

— Used for session analysis when you need to analyze
events in the order they actually occurred

* src/org/apache/pig/builtin/COUNT.java is an
example

— Also implements Algebraic (most Algebraic functions
are also Accumulative)

Algebraic

« Commutative, algebraic functions

— You can apply the function to any subset of the
data (even partial results) in any order

* The most efficient
— Takes advantage of Hadoop combiners
— Also the most complicated ®

* src/org/apache/pig/builtin/COUNT.java is an
example

Algebraic: initial function

* Accepts a Tuple with a Bag with one row
— Complicated, but that’s how it is

* Makes no assumptions on order of execution

— Instantiation may be executed on O or more rows

 Must return a Tuple containing valid Pig data
type

— EvalFunc<Tuple>

Algebraic: intermed function

Accepts Tuple which contains a Bag of results
from the initial or intermediate function

— Must be able to accept it’s own output

Makes no assumptions on how many
elements that Bag will contain

Might not be called at all

Must return a Tuple containing valid Pig data
types

* EvalFunc<Tuple>

Algebraic: final function

Responsible for returning the final aggregate

Accepts Tuple which contains a Bag of results
from initial or intermediate function

Only invoked once
Must return a valid Pig data type

— EvalFunc<T>

Algebraic: Sum example

This abstract class lets us just implement Algebraic

public SimplerSum extends AlgebraicEvalFunc<long>{ Thijs shared class makes Tuples
private static final TupleFactory mTupleFactory = TupleFactory.getinstance();

public String getlnitial() { return|Initial.class.getName(); } These functions return
public String getintermed() { returnInitial.class.getName(); } the classes that will do
public String getFinal() { return Final.class.getName(); } the processing

In this case, the initial and intermediate
functions are the same

private static long sumBag(DataBag inp) {

long sum = 0; This helper function actually
for (Tuple t : inp) { sum += ((Number)t.get(0)).longValue(); } does the summing

return sum;

}

// implementation continued on next slide

}

|

Algebraics: Sum example (cont)

public SimplerSum implements Algebraic {
// assumes previous slide Both classes extend the EvalFunc class
static class Initial extends EvalFunc<Tuple> {
public Tuple exec(Tuple input) throws IOException {
Tuple out = mTupleFactory.newTuple(1);

out.set(0, sumBag((DataBag)input.get(0))); In this case, the Initial function can also
return out; work on collections of it’s own output

}
}

static class Final extends EvalFunc<Long> {
public Long exec(Tuple input) throws IOException {

return sumBag((DataBag)input.get(0)); Only difference is that it returns the

) actual Long instead of wrapping it

}
}

Other extension interfaces

Pig has other interfaces used in advanced cases

AlgebraicEvalFunc<K>
— Implement Algebraic, get Accumulator for free

AccumulatorEvalFunc<K>
— Implement Accumulator, get EvalFunc free

TerminatingAccumulator<K>
— Accumulator which can terminate early
* Can save a significant amount of processing
lteratingAccumulatorEvalFunc<K>

— Provides a more human accumulator interface (at the
cost of some potential overhead)

See the documentation!

e The documentation has information on all of
these topics and more, including

— Quter joins
— Cogroups
— Macros

— Parameters

— More in-depth Accumulator and Algebraic

* Also be sure to look at the source of the built-
in functions (as well as those in Piggybank)

— This is a huge benefit of open source!

