

Intro To Hadoop

Bill Graham - @billgraham

Data Systems Engineer, Analytics Infrastructure
Info 290 - Analyzing Big Data With Twitter

UC Berkeley Information School

September 2012

Outline

- What is Big Data?
- Hadoop
 - HDFS
 - MapReduce
- Twitter Analytics and Hadoop

What is big data?

- A bunch of data?
- An industry?
- An expertise?
- A trend?
- A cliche?

Wikipedia big data

In information technology, big data is a loosely-defined term used to describe data sets so **large** and **complex** that they become **awkward** to work with using on-hand database management tools.

How big is big?

- 2008: Google processes 20 PB a day
- 2009: Facebook has 2.5 PB user data + 15 TB/ day
- 2009: eBay has 6.5 PB user data + 50 TB/day
- 2011: Yahoo! has 180-200 PB of data
- 2012: Facebook ingests 500 TB/day

That's a lot of data

So what?

s/data/knowledge/g

No really, what do you do with it?

- User behavior analysis
- AB test analysis
- Ad targeting
- Trending topics
- User and topic modeling
- Recommendations
- And more...

How to scale data?

Divide and Conquer

Parallel processing is complicated

- How do we assign tasks to workers?
- What if we have more tasks than slots?
- What happens when tasks fail?
- How do you handle distributed

synchronization?

Data storage is not trivial

- Data volumes are massive
- Reliably storing PBs of data is challenging
- Disk/hardware/network failures
- Probability of failure event increases with number of machines

For example:

1000 hosts, each with 10 disks a disk lasts 3 year how many failures per day?

Hadoop cluster

Cluster of machine running Hadoop at Yahoo! (credit: Yahoo!)

Hadoop

Hadoop provides

- Redundant, fault-tolerant data storage
- Parallel computation framework
- Job coordination

Joy

Hadoop origins

- Hadoop is an open-source implementation based on GFS and MapReduce from Google
- Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. (2003) <u>The Google File System</u>
- Jeffrey Dean and Sanjay Ghemawat. (2004)
 MapReduce: Simplified Data Processing on Large Clusters. OSDI 2004

Hadoop Stack

HDFS

HDFS is...

- A distributed file system
- Redundant storage
- Designed to reliably store data using commodity hardware
- Designed to expect hardware failures
- Intended for large files
- Designed for batch inserts
- The Hadoop Distributed File System

HDFS - files and blocks

- **Files** are stored as a collection of blocks
- Blocks are 64 MB chunks of a file (configurable)
- Blocks are replicated on 3 nodes (configurable)
- The NameNode (NN) manages metadata about files and blocks
- The SecondaryNameNode (SNN) holds a backup of the NN data
- DataNodes (DN) store and serve blocks

Replication

- Multiple copies of a block are stored
- Replication strategy:
 - Copy #1 on another node on same rack
 - Copy #2 on another node on different rack

HDFS - writes

HDFS - reads

What about DataNode failures?

DNs check in with the NN to report health

Upon failure NN orders DNs to replicate under-

replicated blocks

MapReduce

MapReduce is...

- A programming model for expressing distributed computations at a massive scale
- An execution framework for organizing and performing such computations
- An open-source implementation called Hadoop

Typical large-data problem

- Iterate over a large number of records
- Extract something of interest from each
- Shuffle and sort intermediate results
- Aggregate intermediate results
- Generate final output

Мар

Reduce

MapReduce paradigm

• Implement two functions:

```
Map(k1, v1) \rightarrow list(k2, v2)
Reduce(k2, list(v2)) \rightarrow list(v3)
```

- Framework handles everything else*
- Value with same key go to same reducer

MapReduce Flow

MapReduce - word count example

```
function map(String name, String document):
   for each word w in document:
      emit(w, 1)

function reduce(String word, Iterator partialCounts):
   totalCount = 0
   for each count in partialCounts:
      totalCount += count
   emit(word, totalCount)
```


MapReduce paradigm - part 2

- There's more!
- Partioners decide what key goes to what reducer
 - partition(k', numPartitions) ->
 partNumber
 - Divides key space into parallel reducers chunks
 - Default is hash-based
- Combiners can combine Mapper output before sending to reducer
 - Reduce $(k2, list(v2)) \rightarrow list(v3)$

MapReduce flow

MapReduce additional details

- Reduce starts after all mappers complete
- Mapper output gets written to disk
- Intermediate data can be copied sooner
- Reducer gets keys in sorted order
- Keys not sorted across reducers
- Global sort requires 1 reducer or smart partitioning

MapReduce - jobs and tasks

- **Job**: a user-submitted map and reduce implementation to apply to a data set
- Task: a single mapper or reducer task
 - Failed tasks get retried automatically
 - Tasks run local to their data, ideally
- JobTracker (JT) manages job submission and task delegation
- TaskTrackers (TT) ask for work and execute tasks

MapReduce architecture

What about failed tasks?

- Tasks will fail
- JT will retry failed tasks up to N attempts
- After N failed attempts for a task, job fails
- Some tasks are slower than other
- Speculative execution is JT starting up multiple of the same task
- First one to complete wins, other is killed

MapReduce data locality

- Move computation to the data
- Moving data between nodes has a cost
- MapReduce tries to schedule tasks on nodes with the data
- When not possible TT has to fetch data from DN

MapReduce - Java API

Mapper:

• Reducer:

MapReduce - Java API

- Writable
 - Hadoop wrapper interface
 - Text, IntWritable, LongWritable, etc
- WritableComparable
 - Writable classes implement WritableComparable
- OutputCollector
 - Class that collects keys and values
- Reporter
 - Reports progress, updates counters
- InputFormat
 - Reads data and provide InputSplits
 - Examples: TextInputFormat, KeyValueTextInputFormat
- OutputFormat
 - Writes data
 - Examples: TextOutputFormat, SequenceFileOutputFormat

MapReduce - Counters are...

- A distributed count of events during a job
- A way to indicate job metrics without logging
- Your friend

Bad:

```
System.out.println("Couldn't parse value");
```

Good:

```
reporter.incrCounter(BadParseEnum, 1L);
```


MapReduce - word count mapper

```
public static class Map extends MapReduceBase
       implements Mapper<LongWritable, Text, Text, IntWritable> {
   private final static IntWritable one = new IntWritable(1);
   private Text word = new Text();
   public void map (LongWritable key, Text value,
                    OutputCollector<Text, IntWritable> output,
                    Reporter reporter) throws IOException {
      String line = value.toString();
      StringTokenizer tokenizer = new StringTokenizer(line);
      while (tokenizer.hasMoreTokens()) {
         word.set(tokenizer.nextToken());
         output.collect(word, one);
```

MapReduce - word count reducer

```
public static class Reduce extends MapReduceBase implements
       Reducer<Text, IntWritable, Text, IntWritable> {
    public void reduce (Text key,
                 Iterator<IntWritable> values,
                 OutputCollector<Text, IntWritable> output,
                 Reporter reporter) throws IOException {
      int sum = 0;
      while (values.hasNext()) {
         sum += values.next().get();
      output.collect(key, new IntWritable(sum));
```


MapReduce - word count main

```
public static void main(String[] args) throws Exception {
     JobConf conf = new JobConf(WordCount.class);
     conf.setJobName("wordcount");
     conf.setOutputKeyClass(Text.class);
     conf.setOutputValueClass(IntWritable.class);
     conf.setMapperClass(Map.class);
     conf.setCombinerClass(Reduce.class);
     conf.setReducerClass(Reduce.class);
     conf.setInputFormat(TextInputFormat.class);
     conf.setOutputFormat(TextOutputFormat.class);
     FileInputFormat.setInputPaths(conf, new Path(args[0]));
     FileOutputFormat.setOutputPath(conf, new Path(args[1]));
     JobClient.runJob(conf);
```


MapReduce - running a job

To run word count, add files to HDFS and do:

```
$ bin/hadoop jar wordcount.jar
org.myorg.WordCount input_dir output_dir
```


MapReduce is good for...

- Embarrassingly parallel algorithms
- Summing, grouping, filtering, joining
- Off-line batch jobs on massive data sets
- Analyzing an entire large dataset

MapReduce is ok for...

- Iterative jobs (i.e., graph algorithms)
 - Each iteration must read/write data to disk
 - IO and latency cost of an iteration is high

MapReduce is not good for...

- Jobs that need shared state/coordination
 - Tasks are shared-nothing
 - Shared-state requires scalable state store
- Low-latency jobs
- Jobs on small datasets
- Finding individual records

Hadoop combined architecture

NameNode UI

Tool for browsing HDFS

Browse the filesystem Namenode Logs

Cluster Summary

1232833 files and directories, 1223577 blocks = 2456410 total. Heap Size is 63.98 GB / 63.98 GB (100%)

Configured Capacity	:	860.48 TB
DFS Used	:	180.96 TB
Non DFS Used	:	0 KB
DFS Remaining	:	679.52 TB
DFS Used%	:	21.03 %
DFS Remaining%	:	78.97 %
Live Nodes	:	42
Dead Nodes	:	0
Decommissioning Nodes	:	0
Number of Under-Replicated Blocks	:	0

JobTracker UI

Tool to see running/completed/failed jobs

Cluster Summary (Heap Size is 63.99 GB/63.99 GB)

Running Map Tasks	Running Reduce Tasks	Total Submissions	Nodes	Occupied Map Slots	Occupied Reduce Slots	Reserved Map Slots	Reserved Reduce Slots	Map Task Capacity	Reduce Task Capacity	Avg. Tasks/No
0	0	5137	41	0	0	0	0	410	164	14.00

Scheduling Information

Queue Name	State	Scheduling Information				
default	running	N/A				

r (Jobid, Priority, User, Name)

Example: 'user:smith 3200' will filter by 'smith' only in the user field and '3200' in all fields

Running Jobs

none

Completed Jobs

Jobid	Priority	User	Name	Map % Complete	Map Total	Maps Completed	Reduce % Complete	Reduce Total	Reduces Completed
job_201206241643_5131	NORMAL	hudson	word count	100.00%	1	1	100.00%	1	1
job_201206241643_5132	NORMAL	hudson	word count	100.00%	1	1	100.00%	1	1
job_201206241643_5133	NORMAL	hudson	word count	100.00%	1	1	100.00%	1	1

Running Hadoop

- Multiple options
- On your local machine (standalone or pseudodistributed)
- Local with a virtual machine
- On the cloud (i.e. Amazon EC2)
- In your own datacenter

Cloudera VM

- Virtual machine with Hadoop and related technologies pre-loaded
- Great tool for learning Hadoop
- Eases the pain of downloading/installing
- Pre-loaded with sample data and jobs
- Documented tutorials
- VM: https://ccp.cloudera.com/display/SUPPORT/Cloudera
 %27s+Hadoop+Demo+VM
- Tutorial: https://ccp.cloudera.com/display/SUPPORT/
 Hadoop+Tutorial

Twitter Analytics and Hadoop

Multiple teams use Hadoop

- Analytics
- Revenue
- Personalization & Recommendations
- Growth

Twitter Analytics data flow

Example: active users

Credits

Data-Intensive Information Processing Applications —
 Session #1, Jimmy Lin, University of Maryland

Questions?

Bill Graham - @billgraham

