
Intro To Hadoop
Bill Graham - @billgraham

Data Systems Engineer, Analytics Infrastructure
Info 290 - Analyzing Big Data With Twitter

UC Berkeley Information School
September 2012

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Outline

• What is Big Data?
• Hadoop

• HDFS
• MapReduce

• Twitter Analytics and Hadoop

2

What is big data?

• A bunch of data?
• An industry?
• An expertise?
• A trend?
• A cliche?

3

Wikipedia big data

In information technology, big data is a loosely-defined
term used to describe data sets so large and
complex that they become awkward to work with
using on-hand database management tools.

4Source: http://en.wikipedia.org/wiki/Big_data

http://en.wikipedia.org/wiki/Big_data
http://en.wikipedia.org/wiki/Big_data

How big is big?

• 2008: Google processes 20 PB a day
• 2009: Facebook has 2.5 PB user data + 15 TB/
day
• 2009: eBay has 6.5 PB user data + 50 TB/day
• 2011: Yahoo! has 180-200 PB of data
• 2012: Facebook ingests 500 TB/day

5

That’s a lot of data

6Credit: http://www.flickr.com/photos/19779889@N00/1367404058/

http://www.flickr.com/photos/19779889@N00/1367404058/
http://www.flickr.com/photos/19779889@N00/1367404058/

So what?

s/data/knowledge/g

7

No really, what do you do with it?

• User behavior analysis
• AB test analysis
• Ad targeting
• Trending topics
• User and topic modeling
• Recommendations
• And more...

8

How to scale data?

9

Divide and Conquer

10

“Work”

w1 w2 w3

r1 r2 r3

“Result”

“worker” “worker” “worker”

Partition

Combine

Parallel processing is complicated

• How do we assign tasks to workers?
• What if we have more tasks than slots?
• What happens when tasks fail?
• How do you handle distributed
synchronization?

11Credit: http://www.flickr.com/photos/sybrenstuvel/2468506922/

http://www.flickr.com/photos/sybrenstuvel/2468506922/
http://www.flickr.com/photos/sybrenstuvel/2468506922/

Data storage is not trivial
• Data volumes are massive
• Reliably storing PBs of data is challenging
• Disk/hardware/network failures
• Probability of failure event increases with number of
machines

 For example:
 1000 hosts, each with 10 disks
 a disk lasts 3 year
 how many failures per day?

12

Hadoop cluster

13

Cluster of machine running Hadoop at Yahoo! (credit: Yahoo!)

Hadoop

14

Hadoop provides

• Redundant, fault-tolerant data storage
• Parallel computation framework
• Job coordination

15http://hapdoop.apache.org

http://hapdoop.apache.org
http://hapdoop.apache.org

Joy

16Credit: http://www.flickr.com/photos/spyndle/3480602438/

http://www.flickr.com/photos/spyndle/3480602438/
http://www.flickr.com/photos/spyndle/3480602438/

Hadoop origins

• Hadoop is an open-source implementation based
on GFS and MapReduce from Google
• Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung. (2003) The Google File System
• Jeffrey Dean and Sanjay Ghemawat. (2004)
MapReduce: Simplified Data Processing on Large
Clusters. OSDI 2004

17

http://portal.acm.org/citation.cfm?id=945450
http://portal.acm.org/citation.cfm?id=945450
http://portal.acm.org/citation.cfm?id=1251264
http://portal.acm.org/citation.cfm?id=1251264
http://portal.acm.org/citation.cfm?id=1251264
http://portal.acm.org/citation.cfm?id=1251264

Hadoop Stack

18

MapReduce
(Distributed Programming Framework)

Pig
(Data Flow)

Hive
(SQL)

HDFS
(Hadoop Distributed File System)

Cascading
(Java)

H
Ba

se
(C

ol
um

na
r D

at
ab

as
e)

HDFS

19

HDFS is...

• A distributed file system
• Redundant storage
• Designed to reliably store data using commodity
hardware
• Designed to expect hardware failures
• Intended for large files
• Designed for batch inserts
• The Hadoop Distributed File System

20

HDFS - files and blocks

• Files are stored as a collection of blocks
• Blocks are 64 MB chunks of a file (configurable)
• Blocks are replicated on 3 nodes (configurable)
• The NameNode (NN) manages metadata about files
and blocks
• The SecondaryNameNode (SNN) holds a backup
of the NN data
• DataNodes (DN) store and serve blocks

21

Replication

• Multiple copies of a block are stored
• Replication strategy:

• Copy #1 on another node on same rack
• Copy #2 on another node on different rack

22

HDFS - writes

23

DataNode

Block

Slave node

NameNode

Master

DataNode

Block

Slave node

DataNode

Block

Slave node

File

Client

Rack #1 Rack #2

Note: Write path for a
single block shown.
Client writes multiple
blocks in parallel.

block

HDFS - reads

24

DataNode

Block

Slave node

NameNode

Master

DataNode

Block

Slave node

DataNode

Block

Slave node

File

Client
Client reads multiple blocks
in parallel and re-assembles
into a file.

block 1 block 2
block N

What about DataNode failures?

• DNs check in with the NN to report health
• Upon failure NN orders DNs to replicate under-
replicated blocks

25Credit: http://www.flickr.com/photos/18536761@N00/367661087/

http://www.flickr.com/photos/18536761@N00/367661087/
http://www.flickr.com/photos/18536761@N00/367661087/

MapReduce

26

MapReduce is...

• A programming model for expressing distributed
computations at a massive scale
• An execution framework for organizing and
performing such computations
• An open-source implementation called Hadoop

27

Typical large-data problem

• Iterate over a large number of records
• Extract something of interest from each
• Shuffle and sort intermediate results
• Aggregate intermediate results
• Generate final output

28

Map

Reduce

(Dean and Ghemawat, OSDI 2004)

MapReduce paradigm

• Implement two functions:
 Map(k1, v1) -> list(k2, v2)
 Reduce(k2, list(v2)) -> list(v3)

• Framework handles everything else*
• Value with same key go to same reducer

29

MapReduce Flow

30

map map map map

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

MapReduce - word count example

function map(String name, String document):

 for each word w in document:

 emit(w, 1)

function reduce(String word, Iterator partialCounts):

 totalCount = 0

 for each count in partialCounts:

 totalCount += count

 emit(word, totalCount)

31

MapReduce paradigm - part 2
• There’s more!
• Partioners decide what key goes to what reducer

• partition(k’, numPartitions) ->
partNumber

• Divides key space into parallel reducers chunks
• Default is hash-based

• Combiners can combine Mapper output before
sending to reducer

• Reduce(k2, list(v2)) -> list(v3)

32

MapReduce flow

33

combine combine combine combine

b a 1 2 c 9 a c 5 2 b c 7 8

partition partition partition partition

map map map map

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

c 2 3 6 8

MapReduce additional details

• Reduce starts after all mappers complete
• Mapper output gets written to disk
• Intermediate data can be copied sooner
• Reducer gets keys in sorted order
• Keys not sorted across reducers
• Global sort requires 1 reducer or smart
partitioning

34

MapReduce - jobs and tasks
• Job: a user-submitted map and reduce
implementation to apply to a data set
• Task: a single mapper or reducer task

• Failed tasks get retried automatically
• Tasks run local to their data, ideally

• JobTracker (JT) manages job submission and
task delegation
• TaskTrackers (TT) ask for work and execute
tasks

35

MapReduce architecture

36

TaskTracker

Task

Slave node

JobTracker

Master

TaskTracker

Task

Slave node

TaskTracker

Task

Slave node

Job

Client

What about failed tasks?

• Tasks will fail
• JT will retry failed tasks up to N attempts
• After N failed attempts for a task, job fails
• Some tasks are slower than other
• Speculative execution is JT starting up
multiple of the same task
• First one to complete wins, other is killed

37Credit: http://www.flickr.com/photos/phobia/2308371224/

http://www.flickr.com/photos/phobia/2308371224/
http://www.flickr.com/photos/phobia/2308371224/

MapReduce data locality

• Move computation to the data
• Moving data between nodes has a cost
• MapReduce tries to schedule tasks on nodes
with the data
• When not possible TT has to fetch data from DN

38

MapReduce - Java API
• Mapper:
 void map(WritableComparable key,
 Writable value,
 OutputCollector output,
 Reporter reporter)

• Reducer:
 void reduce(WritableComparable key,
 Iterator values,
 OutputCollector output,
 Reporter reporter)

39

MapReduce - Java API
• Writable

• Hadoop wrapper interface
• Text, IntWritable, LongWritable, etc

• WritableComparable
• Writable classes implement WritableComparable

• OutputCollector
• Class that collects keys and values

• Reporter
• Reports progress, updates counters

• InputFormat
• Reads data and provide InputSplits
• Examples: TextInputFormat, KeyValueTextInputFormat

• OutputFormat
• Writes data
• Examples: TextOutputFormat, SequenceFileOutputFormat

40

MapReduce - Counters are...
• A distributed count of events during a job
• A way to indicate job metrics without logging
• Your friend

• Bad:
 System.out.println(“Couldn’t parse value”);
• Good:
 reporter.incrCounter(BadParseEnum, 1L);

41

MapReduce - word count mapper
public static class Map extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(LongWritable key, Text value,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter) throws IOException {

 String line = value.toString();
 StringTokenizer tokenizer = new StringTokenizer(line);
 while (tokenizer.hasMoreTokens()) {
 word.set(tokenizer.nextToken());
 output.collect(word, one);
 }
 }
}

42

MapReduce - word count reducer
public static class Reduce extends MapReduceBase implements

 Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key,
 Iterator<IntWritable> values,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter) throws IOException {
 int sum = 0;
 while (values.hasNext()) {
 sum += values.next().get();
 }
 output.collect(key, new IntWritable(sum));
 }
}

43

MapReduce - word count main
public static void main(String[] args) throws Exception {
 JobConf conf = new JobConf(WordCount.class);
 conf.setJobName("wordcount");

 conf.setOutputKeyClass(Text.class);
 conf.setOutputValueClass(IntWritable.class);

 conf.setMapperClass(Map.class);
 conf.setCombinerClass(Reduce.class);
 conf.setReducerClass(Reduce.class);

 conf.setInputFormat(TextInputFormat.class);
 conf.setOutputFormat(TextOutputFormat.class);

 FileInputFormat.setInputPaths(conf, new Path(args[0]));
 FileOutputFormat.setOutputPath(conf, new Path(args[1]));

 JobClient.runJob(conf);
}

44

MapReduce - running a job

• To run word count, add files to HDFS and do:

$ bin/hadoop jar wordcount.jar
org.myorg.WordCount input_dir output_dir

45

MapReduce is good for...

• Embarrassingly parallel algorithms
• Summing, grouping, filtering, joining
• Off-line batch jobs on massive data sets
• Analyzing an entire large dataset

46

MapReduce is ok for...

• Iterative jobs (i.e., graph algorithms)
• Each iteration must read/write data to disk
• IO and latency cost of an iteration is high

47

MapReduce is not good for...

• Jobs that need shared state/coordination
• Tasks are shared-nothing
• Shared-state requires scalable state store

• Low-latency jobs
• Jobs on small datasets
• Finding individual records

48

Hadoop combined architecture

49

TaskTracker

DataNode

Slave node

JobTracker

Master

TaskTracker

DataNode

Slave node

TaskTracker

DataNode

Slave node

SecondaryNameNode

Backup

NameNode

NameNode UI
• Tool for browsing HDFS

50

JobTracker UI
• Tool to see running/completed/failed jobs

51

Running Hadoop

• Multiple options
• On your local machine (standalone or pseudo-
distributed)
• Local with a virtual machine
• On the cloud (i.e. Amazon EC2)
• In your own datacenter

52

Cloudera VM
• Virtual machine with Hadoop and related technologies
pre-loaded
• Great tool for learning Hadoop
• Eases the pain of downloading/installing
• Pre-loaded with sample data and jobs
• Documented tutorials
• VM: https://ccp.cloudera.com/display/SUPPORT/Cloudera
%27s+Hadoop+Demo+VM
• Tutorial: https://ccp.cloudera.com/display/SUPPORT/
Hadoop+Tutorial

53

https://ccp.cloudera.com/display/SUPPORT/Cloudera%27s+Hadoop+Demo+VM
https://ccp.cloudera.com/display/SUPPORT/Cloudera%27s+Hadoop+Demo+VM
https://ccp.cloudera.com/display/SUPPORT/Cloudera%27s+Hadoop+Demo+VM
https://ccp.cloudera.com/display/SUPPORT/Cloudera%27s+Hadoop+Demo+VM
https://ccp.cloudera.com/display/SUPPORT/Hadoop+Tutorial
https://ccp.cloudera.com/display/SUPPORT/Hadoop+Tutorial
https://ccp.cloudera.com/display/SUPPORT/Hadoop+Tutorial
https://ccp.cloudera.com/display/SUPPORT/Hadoop+Tutorial

Twitter Analytics
and Hadoop

54

Multiple teams use Hadoop

• Analytics
• Revenue
• Personalization & Recommendations
• Growth

55

Application
Data

Third Party
Imports MySQL/

Gizzard

Analytics
Web Tools

 Main Hadoop DW

MySQL

Vertica

Production Hosts

Social graph
Tweets
User profiles

HDFS

Staging Hadoop Cluster

Scribe
Aggregators

Log
events

HBase

Twitter Analytics data flow

56

Rasvelg

Analysts
Engineers
PMs
Sales

HCatalog

Distributed
Crawler

Log
Mover

Crane Crane

Crane

Crane
Crane

Crane

Oink Oink

Oink

Example: active users

57

Production Hosts

MySQL/
Gizzard

Main Hadoop DW

Vertica MySQL
Analytics

Dashboards

web_events

sms_events

Log mover
(via staging cluster)

Scribe

Scribe

Job DAG

Log mover

Oink/Pig
Cleanse
Filter
Transform
Geo lookup
Union
Distinct

Oink

Oink
user_sessions

Oink

user_profiles
Crane

Crane

Crane

...

Crane

active_by_*

Rasvelg

Join
Aggregations:
- active_by_geo
- active_by_device
- active_by_client
...

Join, Group, Count
Aggregations:
- active_by_geo
- active_by_device
- active_by_client
...

Rasvelg

Credits

• Data-Intensive Information Processing Applications ―
Session #1, Jimmy Lin, University of Maryland

58

Questions?

59

Bill Graham - @billgraham

