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What is big data”

e A bunch of data”
* An industry?

® An expertise?

o A trend?

e A cliche?”




Wikipedia big data

In information technology, big data is a loosely-defined
term used to describe data sets so large and
complex that they become awkward to work with
using on-hand database management tools.

Source: http://en.wikipedia.org/wiki/Big data 4



http://en.wikipedia.org/wiki/Big_data
http://en.wikipedia.org/wiki/Big_data

How big is big”

e 2008: Google processes 20 PB a day

e 2009: Facebook has 2.5 PB user data + 15 TB/
day

e 2009: eBay has 6.5 PB user data + 50 TB/day
e 2011: Yahoo! has 180-200 PB of data
e 2012: Facebook ingests 500 TB/day




That's a lot of data
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, Credit: http://www.flickr.com/photos/19779889@N00/1367404058/
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SO what?

s/data/knowledge/g



No really, what do you do with it”

® User behavior analysis

o AB test analysis

e Ad targeting

® [rending topics

e User and topic modeling
e Recommendations

e And more...




How to scale data?
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Parallel processing is complicated

e How do we assign tasks to workers”?
¢ \/Vhat if we have more tasks than slots”
¢ \/V\hat happens when tasks fail?

e How do you handle distributed
synchronization”?

’ Credit: http://www.flickr.com/photos/sybrenstuvel/2468506922/
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Data storage is not trivial

e Data volumes are massive
e Reliably storing PBs of data is challenging
e Disk/hardware/network failures

e Propbabillity of failure event increases with number of
machines

For example:
1000 hosts, each with 10 disks
a disk lasts 3 year
how many failures per day?
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Hadoop cluster
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Cluster of machine running Hadoop at Yahoo! (credit: Yahoo!)
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Hadoop



Hadoop provides

e Redundant, fault-tolerant data storage
e Parallel computation framework
e Job coordination

s TiEElamEm

http://hapdoop.apache.org
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y Credit:

http://www.flickr.com/photos/spyndle/34806024 38/
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Hadoop origins

e Hadoop Is an open-source iImplementation based
on GFS and MapReduce from Google

e Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung. (2003) The Google File System

¢ Jeffrey Dean and Sanjay Ghemawat. (2004)
MapReduce: Simplified Data Processing on Large

Clusters. OSDI 2004
i@hadaap

17


http://portal.acm.org/citation.cfm?id=945450
http://portal.acm.org/citation.cfm?id=945450
http://portal.acm.org/citation.cfm?id=1251264
http://portal.acm.org/citation.cfm?id=1251264
http://portal.acm.org/citation.cfm?id=1251264
http://portal.acm.org/citation.cfm?id=1251264

Hadoop Stack

HBase

2 Pig Hive Cascading
g (Data Flow) (SQL) (Java)

5

S

S

2 MapReduce

S8 (Distributed Programming Framework)

HDFS

(Hadoop Distributed File System)

18



HDFS



HDFS Is...

o A distributed file system
e Redundant storage

e Designed to reliably store data using commodity
hardware

e Designed to expect hardware failures
* [ntended for large files

e Designed for batch inserts

e The Hadoop Distributed File System




HDFS - files and blocks

¢ Files are stored as a col

e Blocks are 64 M

85 chun

ection o

" blocks

KS of a fi

e (configurable)

e Blocks are replicated on 3 nodes (configurable)

e The NameNode (NN) manages metadata about files

and blocks

e The SecondaryNameNode (SNN) holds a backup

of the NN data

e DataNodes (DN) store and serve blocks
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Replication

e Multiple copies of a block are stored

e CO
e CO

e Replication strategy:

oy #1 on another node on same rack

oy #2 on another node on different rack
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HDFS - writes

Client 5 Master |
; 5 : Note: Write path for a
File 5> NameNode single block shown.
: ; j Client writes multiple
blocks in parallel.
block
""""""""""" Rack#1 1!  Rack#2

------------------------------------------------------------------------

Slavenode i ! Slavenode i Slave node

DataNode — 5 DataNode > DataNode

Yy .



HDFS - reads

Client 5 5 Master | |
| : Client reads multiple blocks

File 5 ] NameNode | in parallel and re-assembles
’ : into a file.

block 2

---------------------------------------------------------------------

Slave node Slave node

DataNode = DataNode = DataNode

Yy :



What about DataNode failures?

e DNs check in with the NN to report health

e Upon fallure NN orders DNs to replicate under-
replicated blocks

, Credit: http://www.flickr.com/photos/18536761@N00/367661087/ o5
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MapReduce



VlapReduce is...

e A programming model for expressing distributed
computations at a massive scale

* An execution framework for organizing and
performing such computations

* An open-source iImplementation called Hadoop

27



Typical large-data problem

e Extract something of interest from each

e Shuffle and sort intermediate results

e Aggregate intermediate results lReduce
e (Generate final output

® [terate over a large number of records l
Map

, (Dean and Ghemawat, OSDI 2004)
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MapReduce paradigm

* Implement two functions:
Map (k1, v1) -> list (k2, v2)
Reduce (k2, list(v2)) -> 1list(v3)
e Framework handles everything else”
e \VValue with same key go to same reducer

29



ViapReduce Fow
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reduce reduce reduce
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MapReduce - word count example

function map (String name, String document) :
for each word w 1n document:

emit(w, 1)

function reduce (String word, Iterator partialCounts) :
totalCount = 0
for each count in partialCounts:
totalCount += count

emlt (word, totalCount)

Yy
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MapReduce paradigm - part 2

® [here’s more!
e Partioners decide what key goes to what reducer

e partition(k’, numPartitions) ->
partNumber

e Divides key space into parallel reducers chunks
e Default is hash-based

e Combiners can combine Mapper output before
sending to reducer

® Reduce (k2, list(v2)) -> 1list(v3)
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ViapReduce flow
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VlapReduce additional details

e Reduce starts after all mappers complete
 Mapper output gets written to disk

® [ntermediate data can be copied sooner
e Reducer gets keys in sorted order

e Keys not sorted across reducers

e Global sort requires 1 reducer or smart
partitioning
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MapReduce - jobs and tasks

e Job: a user-submitted map and reduce

implementatio
e Task: a sing

N to apply to a data set

e mapper or reducer task

e Failed tasks get retried automatically

e [asks run

local to their data, ideally

e JobTracker (JT) manages job submission and
task delegation

e TaskTrackers (1 1) ask for work and execute

tasks
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MapReduce architecture

Client i Master

Job > JobTracker




What about falled tasks?

e [asks will

fall

o JT will retry failed

o After N fai

® Some tas

led atte

<KS dfre S

tasks up to N attempts
mpts for a task, job falls

ower than other

® Speculative execution is JT starting up
multiple of the same task

¢ irst one to complete wins, other is killed

y Credit: http://www.flickr.com/photos/phobia/2308371224/
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MapReduce data locality

e \ove computation to the data
* Moving data between nodes has a cost

e MapReduce tries to schedule tasks on nodes
with the data

e \V\hen not possible TT has to fetch data from

DN
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VapReduce - Java AP

e Mapper:
vold map (WritableComparable key,
Writable wvalue,
OQutputCollector output,
Reporter reporter)

* Reducer:
vold reduce (WritableComparable key,
Iterator wvalues,
OQutputCollector output,
Reporter reporter)

39



VapReduce - Java AP

e Writable
e Hadoop wrapper interface
e Text, IntWritable, LongWritable, €tC
e WritableComparable
e Writable classes implement WritableComparable
e OutputCollector
e (lass that collects keys and values
e Reporter

e Reports progress, updates counters
e InputFormat

e Reads data and provide InputSplits

e Examples: TextInputFormat, KeyValueTextInputFormat
e OQutputFormat

e \Writes data

" e Examples: TextOutputFormat, SequenceFileOutputFormat

40



MapReduce - Counters are...

e A distributed count of events during a job
e A way to indicate job metrics without logging
® Your friend

e Bad:

System.out.println (“Couldn’t parse value”);

e GO0d:

reporter.1incrCounter (BadParsekEnum, 1L);
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MapReduce - word count mapper

public static class Map extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(l);
private Text word = new Text();

public void map (LongWritable key, Text value,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {

String line = value.toString();
StringTokenilizer tokenizer = new StringTokenizer (line);
while (tokenizer.hasMoreTokens()) {

word.set (tokenizer.nextToken () ) ;

output.collect (word, one);



VlapReduce - word count reducer

public static class Reduce extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> ({

public void reduce (Text key,
ITterator<IntWritable> wvalues,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {

int sum = 0;
while (values.hasNext()) {
sum += values.next () .get();

}
output.collect (key, new IntWritable (sum)):;



MapReduce - word count main

public static void main (String[] args) throws Exception {
JobConf conf = new JobConf (WordCount.class);
conf.setJobName ("wordcount") ;

conf.

conft

conft.

conft
conftf

conft.
conft.

setOutputKeyClass (Text.class);
.setOutputValueClass (IntWritable.class);

setMapperClass (Map.class) ;
.setCombinerClass (Reduce.class) ;
.setReducerClass (Reduce.class) ;

setInputFormat (TextInputFormat.class);
setOutputFormat (TextOutputFormat.class) ;

FileInputFormat.setInputPaths (conf, new Path (args[0])):;

FileOutputFormat.setOutputPath (conf, new Path(args[l]));

JobClient.runJob (conf) ;
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MapReduce - running a job

e [0 run word count, add files to HDFS and do:

S bin/hadoop jar wordcount.jar
org.myorg.WordCount input dir output dir
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MapReduce Is good for...

* SL

o Of

-line

mming, g

Dalc

 Embarrassingly parallel algorithms

rouping, filtering, joining

N jolbs on massive data sets

e Analyzing an entire large dataset
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VlapReduce Is ok for...

°® [te

rative jobs (i.e., graph algorithms)
—ach iteration must read/write data to disk

O and latency cost of an iteration is high
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MapReduce Is not good for...

e Jobs that need shared state/coordination
e [asks are shared-nothing
e Shared-state requires scalable state store
e | ow-latency |obs
e Jobs on small datasets
* Finding individual records
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Hadoop combined architecture

........................

Master
JobTracker Backup
NameNode :—> SecondaryNameNode

Slavenode @ : Slavenode : : Slave node

TaskTracker| |TaskTracker| '@ |TaskTracker

I B R N B

DataNode = : | | DataNode : : | DataNode




NameNode Ul

® Tool for browsing HDFS

Browse the filesystem
Namenode Logs

Cluster Summary

1232833 files and directories, 1223577 blocks = 2456410 total. Heap Size is 63.98 GB / 63.98 GB (100%)

Configured Capacity : 860.48 TB
DFS Used : 180.96 TB
Non DFS Used : O KB
DFS Remaining : 679.52 TB
DFS Used% : 21.03 %
DFS Remaining% : 78.97 %
Live Nodes : 42
Dead Nodes : 0
Decommissioning Nodes 0
Number of Under-Replicated Blocks 0




Job Tracker Ul

® [00l to see running/completed/failed jolbs

Cluster Summary (Heap Size is 63.99 GB/63.99 GB)

Running | Running Total Occupied | QeCUPIed | peserved | Aesarved | map Task | RSduce Avg.
p Submissions | N99€8 | map Siots Map Slots Capacity Tasks/N
Tasks Tasks Slots Slots Capacity
0 0 5137 41 0 0 0 0 410 164 14.00
Scheduling Information
Queue Name | State | Scheduling Information
default running | N/A
Filter (Jobid, Priority, User, Name)
Example: ‘usersmith 3200' will fiter by ‘smith’ only in the user field and '3200"in all fields
Running Jobs
‘nonel
Completed Jobs
Map % Map Maps Reduce % Reduce Reduces
Jobid Priority | User | Name | ., olete | Total | Completed | Complete | Total | Completed
job_201206241643_5131 | NORMAL | hudson | %oro, 100.00% o | 1 1 L 1
job_201206241643_5132 | NORMAL | hudson | %o | 10000% __ | 4 1 M 1
job_201206241643_5133 | NORMAL | hudson | or%, 000 | 1 (. - 1
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Running Hadoop

e Multiple options

e On your local machine (standalone or pseudo-
distributed)

e | ocal with a virtual machine
e On the cloud (i.e. Amazon EC?2)
® [n your own datacenter
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Cloudera VM

¢ \/irtual machine with Hadoop and related technologies
pre-loaded

e Great tool for learning Hadoop

e Fases the pain of downloading/installing
e Pre-loaded with sample data and jobs

e Documented tutorials

e \/M: https://ccp.cloudera.com/display/SUPPORT/Cloudera
%27 s+Hadoop+Demo+VM

e [utorial: https://ccp.cloudera.com/display/SUPPORT/
adoop+ Tutorial
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Twitter Analytics
and Hadoop




Multiple teams use Hadoop

e Analytics

Revenue

Parsonalization &

e Growth

Recommendations



Twitter Analytics data flow

Production Hosts

Log Application
events Data
Scribe
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—~— :
O > HDES II'.. Social graph
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Staging Hadoop Cluster Crawler, Engineers
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-
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Example: active users

Production Hosts

Log mover
(via staging cluster)
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Credits

e Data-Intensive Information Processing Applications —
Session #1, Jimmy Lin, University of Maryland
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Questions?

Bill Graham - @billgraham



