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Outline

• What is Big Data?
• Hadoop

• HDFS
• MapReduce

• Twitter Analytics and Hadoop
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What is big data?

• A bunch of data?
• An industry?
• An expertise?
• A trend?
• A cliche?
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Wikipedia big data

In information technology, big data is a loosely-defined 
term used to describe data sets so large and 
complex that they become awkward to work with 
using on-hand database management tools.

4Source: http://en.wikipedia.org/wiki/Big_data
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How big is big?

• 2008: Google processes 20 PB a day
• 2009: Facebook has 2.5 PB user data + 15 TB/
day 
• 2009: eBay has 6.5 PB user data + 50 TB/day
• 2011: Yahoo! has 180-200 PB of data
• 2012: Facebook ingests 500 TB/day
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That’s a lot of data

6Credit: http://www.flickr.com/photos/19779889@N00/1367404058/
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So what?

s/data/knowledge/g
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No really, what do you do with it?

• User behavior analysis
• AB test analysis
• Ad targeting
• Trending topics
• User and topic modeling
• Recommendations
• And more...
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How to scale data?
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Divide and Conquer
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“Work” 
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“Result” 
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Parallel processing is complicated

• How do we assign tasks to workers?
• What if we have more tasks than slots?
• What happens when tasks fail?
• How do you handle distributed 
synchronization?

11Credit: http://www.flickr.com/photos/sybrenstuvel/2468506922/
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Data storage is not trivial
• Data volumes are massive
• Reliably storing PBs of data is challenging
• Disk/hardware/network failures
• Probability of failure event increases with number of 
machines 

     For example:
       1000 hosts, each with 10 disks
       a disk lasts 3 year
       how many failures per day?
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Hadoop cluster
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Cluster of machine running Hadoop at Yahoo! (credit: Yahoo!)



Hadoop
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Hadoop provides

• Redundant, fault-tolerant data storage
• Parallel computation framework
• Job coordination

15http://hapdoop.apache.org
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Joy

16Credit: http://www.flickr.com/photos/spyndle/3480602438/
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Hadoop origins

• Hadoop is an open-source implementation based 
on GFS and MapReduce from Google
• Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung. (2003) The Google File System
• Jeffrey Dean and Sanjay Ghemawat. (2004) 
MapReduce: Simplified Data Processing on Large 
Clusters. OSDI 2004
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Hadoop Stack
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HDFS
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HDFS is...

• A distributed file system
• Redundant storage
• Designed to reliably store data using commodity 
hardware
• Designed to expect hardware failures
• Intended for large files
• Designed for batch inserts
• The Hadoop Distributed File System
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HDFS - files and blocks

• Files are stored as a collection of blocks
• Blocks are 64 MB chunks of a file (configurable)
• Blocks are replicated on 3 nodes (configurable)
• The NameNode (NN) manages metadata about files 
and blocks
• The SecondaryNameNode (SNN) holds a backup 
of the NN data
• DataNodes (DN) store and serve blocks
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Replication

• Multiple copies of a block are stored
• Replication strategy:

• Copy #1 on another node on same rack
• Copy #2 on another node on different rack
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HDFS - writes
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HDFS - reads
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What about DataNode failures?

• DNs check in with the NN to report health
• Upon failure NN orders DNs to replicate under-
replicated blocks

25Credit: http://www.flickr.com/photos/18536761@N00/367661087/
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MapReduce
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MapReduce is...

• A programming model for expressing distributed 
computations at a massive scale
• An execution framework for organizing and 
performing such computations
• An open-source implementation called Hadoop
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Typical large-data problem

• Iterate over a large number of records
• Extract something of interest from each
• Shuffle and sort intermediate results
• Aggregate intermediate results
• Generate final output
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Map

Reduce

(Dean and Ghemawat, OSDI 2004)



MapReduce paradigm

• Implement two functions:
     Map(k1, v1) -> list(k2, v2)
     Reduce(k2, list(v2)) -> list(v3)

• Framework handles everything else*
• Value with same key go to same reducer
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MapReduce Flow
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map map map map 

Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

b a 1 2 c c 3 6 a c 5 2 b c 7 8 

a 1 5 b 2 7 c 2 3 6 8 

r1 s1 r2 s2 r3 s3 



MapReduce - word count example

function map(String name, String document):

  for each word w in document:

    emit(w, 1)

function reduce(String word, Iterator partialCounts):

  totalCount = 0

  for each count in partialCounts:

    totalCount += count

  emit(word, totalCount)
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MapReduce paradigm - part 2
• There’s more!
• Partioners decide what key goes to what reducer

• partition(k’, numPartitions) -> 
partNumber

• Divides key space into parallel reducers chunks
• Default is hash-based

• Combiners can combine Mapper output before 
sending to reducer

• Reduce(k2, list(v2)) -> list(v3)
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MapReduce flow
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combine combine combine combine 

b a 1 2 c 9 a c 5 2 b c 7 8 
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MapReduce additional details

• Reduce starts after all mappers complete
• Mapper output gets written to disk
• Intermediate data can be copied sooner
• Reducer gets keys in sorted order
• Keys not sorted across reducers
• Global sort requires 1 reducer or smart 
partitioning
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MapReduce - jobs and tasks
• Job: a user-submitted map and reduce 
implementation to apply to a data set
• Task: a single mapper or reducer task

• Failed tasks get retried automatically
• Tasks run local to their data, ideally

• JobTracker (JT) manages job submission and 
task delegation
• TaskTrackers (TT) ask for work and execute 
tasks
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MapReduce architecture
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What about failed tasks?

• Tasks will fail
• JT will retry failed tasks up to N attempts
• After N failed attempts for a task, job fails
• Some tasks are slower than other
• Speculative execution is JT starting up 
multiple of the same task
• First one to complete wins, other is killed

37Credit: http://www.flickr.com/photos/phobia/2308371224/
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MapReduce data locality

• Move computation to the data
• Moving data between nodes has a cost
• MapReduce tries to schedule tasks on nodes 
with the data
• When not possible TT has to fetch data from DN
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MapReduce - Java API
• Mapper:
  void map(WritableComparable key,
           Writable value,
           OutputCollector output,
           Reporter reporter)

• Reducer:
  void reduce(WritableComparable key,
              Iterator values,
              OutputCollector output,
              Reporter reporter)
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MapReduce - Java API
• Writable

• Hadoop wrapper interface
• Text, IntWritable, LongWritable, etc

• WritableComparable
• Writable classes implement WritableComparable

• OutputCollector
• Class that collects keys and values

• Reporter
• Reports progress, updates counters

• InputFormat
• Reads data and provide InputSplits
• Examples: TextInputFormat, KeyValueTextInputFormat

• OutputFormat
• Writes data
• Examples: TextOutputFormat, SequenceFileOutputFormat
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MapReduce - Counters are...
• A distributed count of events during a job
• A way to indicate job metrics without logging
• Your friend

• Bad:
 System.out.println(“Couldn’t parse value”);
• Good:
 reporter.incrCounter(BadParseEnum, 1L);
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MapReduce - word count mapper
public static class Map extends MapReduceBase
       implements Mapper<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(LongWritable key, Text value,
                    OutputCollector<Text, IntWritable> output,
                    Reporter reporter) throws IOException {

  String line = value.toString();
  StringTokenizer tokenizer = new StringTokenizer(line);
  while (tokenizer.hasMoreTokens()) {
   word.set(tokenizer.nextToken());
   output.collect(word, one);
  }
 }
}
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MapReduce - word count reducer
public static class Reduce extends MapReduceBase implements

 Reducer<Text, IntWritable, Text, IntWritable> {
 
    public void reduce(Text key,
                 Iterator<IntWritable> values, 
                 OutputCollector<Text, IntWritable> output,
                 Reporter reporter) throws IOException {
  int sum = 0;
  while (values.hasNext()) {
   sum += values.next().get();
  }
  output.collect(key, new IntWritable(sum));
 }
}
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MapReduce - word count main
public static void main(String[] args) throws Exception {
     JobConf conf = new JobConf(WordCount.class);
     conf.setJobName("wordcount");

     conf.setOutputKeyClass(Text.class);
     conf.setOutputValueClass(IntWritable.class);
 
     conf.setMapperClass(Map.class);
     conf.setCombinerClass(Reduce.class);
     conf.setReducerClass(Reduce.class);
  
     conf.setInputFormat(TextInputFormat.class);
     conf.setOutputFormat(TextOutputFormat.class);
 
     FileInputFormat.setInputPaths(conf, new Path(args[0]));
     FileOutputFormat.setOutputPath(conf, new Path(args[1]));
 
     JobClient.runJob(conf);
}
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MapReduce - running a job

• To run word count, add files to HDFS and do:

$ bin/hadoop jar wordcount.jar 
org.myorg.WordCount input_dir output_dir
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MapReduce is good for...

• Embarrassingly parallel algorithms
• Summing, grouping, filtering, joining
• Off-line batch jobs on massive data sets
• Analyzing an entire large dataset
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MapReduce is ok for...

• Iterative jobs (i.e., graph algorithms)
• Each iteration must read/write data to disk
• IO and latency cost of an iteration is high
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MapReduce is not good for...

• Jobs that need shared state/coordination
• Tasks are shared-nothing
• Shared-state requires scalable state store

• Low-latency jobs
• Jobs on small datasets
• Finding individual records
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Hadoop combined architecture
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NameNode UI
• Tool for browsing HDFS
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JobTracker UI
• Tool to see running/completed/failed jobs
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Running Hadoop

• Multiple options
• On your local machine (standalone or pseudo-
distributed)
• Local with a virtual machine
• On the cloud (i.e. Amazon EC2)
• In your own datacenter
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Cloudera VM
• Virtual machine with Hadoop and related technologies 
pre-loaded
• Great tool for learning Hadoop
• Eases the pain of downloading/installing
• Pre-loaded with sample data and jobs
• Documented tutorials
• VM: https://ccp.cloudera.com/display/SUPPORT/Cloudera
%27s+Hadoop+Demo+VM
• Tutorial: https://ccp.cloudera.com/display/SUPPORT/
Hadoop+Tutorial
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Twitter Analytics
and Hadoop
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Multiple teams use Hadoop

• Analytics
• Revenue
• Personalization & Recommendations
• Growth
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Example: active users
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Credits

• Data-Intensive Information Processing Applications ― 
Session #1, Jimmy Lin, University of Maryland
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Questions?
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