
i213 User Interface Design and Development	

	

Professor Tapan Parikh	

School of Information, UC Berkeley	

	

October 10	

	

	

Formative Evaluation	

	

	

Formative evaluation - Discover usability problems as part of an

iterative design process. Goal is to uncover as many problems as

possible.	

	

Summative evaluation - Assess the usability of a prototype, or

compare alternatives. Goal is a reliable, statistically valid

comparison	

FORMATIVE vs SUMMATIVE EVALUATION	

THINKING ALOUD	

“Having a test subject use the
system while continuously thinking
aloud”	

	

Useful for formative evaluation	

	

Understand how users view the
system by externalizing their
thought process	

	

Generates a lot of qualitative data
from relatively small number of
users	

	

Focus on what the user is
concretely doing and saying	

	

metanexus.net	

	

Requires prompting by the experimenter to ensure that the user
continues to externalize their thought process	

	

May slow them down and affect performance	

	

	

GETTING USERS TO OPEN UP	

g33kwatch.com	

Thinking aloud can be unnatural and awkward	

Adapted	 from	 Jake	 Wobbrock	

“Please keep talking.”	

	

“Tell me what you are thinking.”	

	

“Tell me what you are trying to do.”	

	

“Are you looking for something? What?”	

	

“What did you expect to happen just now?”	

	

“What do you mean by that?	

EXAMPLE PROMPTS	

Planning next
semester’s classes	

In-class Activity	

Adapted	 from	 Jake	 Wobbrock	

Do not make value judgments	

	

User: “This is really confusing here.”	

Tester : “Yeah, you’re right. It is.” (BAD)	

Tester : “Okay, I’ll make a note of that.” (GOOD)	

	

Video or audio record (with user’s permission), and/or take
good notes	

	

Screen captures / Eye tracking	

	

When the user is thinking hard, don’t disturb them with a
prompt - wait!	

	

POINTS TO REMEMBER	

Co-Discovery: Two users work together	

 	
- Can spur more conversation	

	
- Needs 2x more users	

	

Retrospective: Think aloud after the fact, reviewing a video
recording	

	
- Doesn’t disturb the user during the task	

	
- User may forget some thoughts, reactions	

	

Coaching: Expert coach guides user, answering questions	

	
- Identify training, help and documentation needs	

	

THINK ALOUD VARIANTS	

Adapted	 from	 Jake	 Wobbrock	

HEURISTIC EVALUATION	

A cheap and effective way to find usability problems	

 	

A small set of expert evaluators “examine the interface
and judge its compliance with recognized usability
principles”	

	

“Discount” usability testing - find problems earlier and
relatively cheaply, without involving real users	

WHAT HEURISTICS?	

Recommended books provide a number of high-level and
low-level design guidelines:	

	

Jakob Nielsen, Usability Engineering	

Donald Norman, Design of Everyday Things	

Jeff Johnson, GUI Bloopers	

	

Other heuristics can be provided by your own intuition,
common sense, user research	

	

We will use Nielsen’s list from Usability Engineering 	

	

NIELSON’S HEURISTICS?	

Simple and Natural Dialog	

Speak the User’s Language	

Minimize User Memory Load	

Consistency	

Feedback	

Clearly Marked Exits	

Shortcuts	

Good Error Messages	

Prevent Errors	

Help and Documentation	

SIMPLE AND NATURAL DIALOG	

Match the user’s task	

	

Minimize navigation	

	

Present exactly the information the user needs, when she
needs it	

	

Use good graphic design	

	

Less is more	

SPEAK THE USER’S LANGUAGE	

Use the same terms the user would	

	

Avoid unusual word meanings	

	

Support synonyms and aliases	

	

Don’t impose naming conventions	

	

Understand users and how they view their domain	

	

MINIMIZE USER MEMORY LOAD	

Recognize rather then Recall	

	

Edit rather then Enter	

	

Choose rather then Input	

	

Provide a small number of basic commands	

	

CONSISTENCY	

Ensure that the same action always has the same
effect (avoid modes)	

	

Present the same information in the same location	

	

Follow established standards and conventions	

	

PROVIDE FEEDBACK	

Continuously inform the user about what is going on	

	

Restate and rephrase user input	

	

Provide warnings for irreversible actions	

	

Give informative feedback even if the system fails	

PROVIDE FEEDBACK	

what did I select?	

what mode am I in now?	

how is the system 	

interpreting my 	

actions?	

WAITING	

Provide a progress indicator for any operation longer then ten
seconds	

	

Reassure the user system hasn’t crashed	

	

Indicate how long user has to wait	

	

Provide something to look at	

	

If can’t provide specific progress, use generic “working”
indicator like the spinning ball in Mac OS X	

http://www.icondeposit.com/design:102	

http://dribbble.com/shots/587110-Progress-Bar-UI-eps?list=tags&tag=ui	

http://dribbble.com/shots/128233-360-Tour-Progress-Location-Bar	

360 degree tour progress location bar	

RESPONSE TIMES	

0.1 second - perceived as instantaneous	

	

1 second - user’s flow of thought stays uninterrupted, but
delay noticed	

	

10 seconds - limit for keeping user’s attention focused on the
dialog	

	

>10 seconds - user will want to perform other tasks while
waiting	

	

CLEARLY MARKED EXITS	

Don’t “trap” the user	

	

Provide an easy way out of trouble	

	

Encourage exploratory learning	

	

Mechanisms:	

Cancel	

Undo, Revert, Back	

Interrupt	

Exit	

	

SHORT CUTS	

Allow expert users to go fast	

	

Avoid GUI operations	

	

Mechanisms:	

	
Keyboard shortcuts	

	
Macros, scripts	

	
Type ahead	

	
Bookmarks, History	

	

	

Keyboard
accelerators for

menus

Customizable
toolbars and
palettes for

frequent
actions

Split menu,
with recently
used fonts on

top

Scrolling
controls for
page-sized
increments

Double-click
raises toolbar

dialog box

Double-click
raises object-
specific menu

GOOD ERROR MESSAGES	

Phrased in clear language	

Avoid obscure codes	

Precisely indicate the problem	

Restate user input	

Do not blame the user	

Constructively suggest a solution	

Opportunity to help user in time of need	

	

	

BAD	

http://www.developsense.com/essays/AReviewOfErrorMessages.html	

Adapted from Jake Wobbrock	

GOOD?	

PREVENT ERRORS	

Bounds-checking	

Select rather then Enter	

Judicious use of confirmation screens	

Avoid modes, unless they are clearly visible or require action
to maintain	

	

	

PREVENT ERRORS	

HELP AND DOCUMENTATION	

Easy to search	

Task-oriented	

List concrete steps	

Provide context-specific help	

Shouldn’t be too large	

Is not a substitute for good design	

	

	

HELP AND DOCUMENTATION	

HELP AND DOCUMENTATION	

http://sixrevisions.com/user-interface/website-help-systems/	

KINDS OF HELP	

Tour / Demo	

Tutorials	

User Guide / Reference manual	

Searchable index	

Tooltips, Balloon Help	

Reference cards	

Keyboard templates	

HEURISTIC EVALUATION	

Can use hi-fi or lo-fi prototype	

Each session should last 1-2 hours	

Evaluator should go through the interface several times, with specific
tasks in mind	

–  First pass: overall feel and scope, identify obvious violations	

–  Second pass: focus on specific elements 	

CONDUCTING A HEURISTIC EVALUATION	

3-5 evaluators are enough to uncover most important problems	

Each evaluator should inspect the interface alone (to reduce bias)	

After the session, the evaluators aggregate observations	

Output is a list of usability problems	

CONDUCTING A HEURISTIC EVALUATION	

If the system is intended to be “walk up and use”, then evaluators
should be provided with minimal help	

	

If the system requires training, then evaluators should be trained and
given an example scenario	

	

Evaluator can be helped after they have made an attempt and
articulated their difficulties	

CONDUCTING A HEURISTIC EVALUATION	

Pre-evaluation training	

Evaluation	

Severity / Fixability rating	

Debriefing	

CONDUCTING A HEURISTIC EVALUATION	

Provided by each evaluator	

Based on frequency, impact, persistence	

Combined into a single numeric index	

Average taken across evaluators	

Allows for prioritization of fixes	

SEVERITY RATINGS	

0: don’t agree that this is a problem	

1: cosmetic problem 	

2: minor problem	

3: major problem; important to fix	

4: catastrophe; imperative to fix	

SEVERITY RATINGS	

Describes how easy each problem would be to fix	

Requires some technical knowledge of system & platform	

Allows for estimating “cost-benefit”	

Can provide possible fix as guidance to development team	

FIXABILITY	

0: Impossible to Fix	

1: Nearly Impossible to Fix	

2: Difficult to Fix	

3: Easy to Fix	

4: Trivial to Fix	

FIXABILITY	

Conducted with evaluators, observers, and development team 	

Discuss characteristics of UI	

Suggest improvements to address major usability problems	

Dev team provides fixability ratings (if it exists)	

Make it a brainstorming session	

	

Adapted	 from	 Saul	 Greenberg	

DEBRIEFING	

A list of problems with heuristics, severity, fixability and possible fixes	

 Evaluator: John T. Doe

 Date: January 1, 2008

 System: Nokia Mobile Phone Model #9999

Number Heuristic Location Description Severity Fixability Sum Possible Fix

 1

 Visibility
of system

status

Home
screen

The home screen does not portray any
information about battery power remaining,
making it hard for users to tell how much
power they have left.

 3

 3

 6

Display a battery
life indicator on the
home screen.

 2

 User
control

and
freedom

Screen for
writing a

text
message

Once you are on the screen for writing a
text message, you cannot leave without
sending the message. Users need a way to
get out if they decide not to send a
message.

 3

 2

 5

Allow the CLR
button to always
move the user
back one screen
no matter where
they are.

Adapted	 from	 Jake	 Wobbrock	

OUTPUT	

For next time	

 Low fidelity paper prototypes due	

	

 In class formative evaluation	

	

	

	

