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Cognitive approach to HCI attempts to predict user performance 
based on a model of cognition	


	

Start with a model of how humans act	

	

Use that model to predict how humans would complete tasks using 

a particular UI	

	

Provided theoretical foundation of HCI in the 1970s and 1980s	

	


Cognitive Modeling 



Source: Stuart Card, Lecture on Human Information Interaction, 2007  	




Abstract	

Quantitative	


Approximate	

Estimated from experiments	


Based on a theory of cognition	


	

	


Adapted from Rob Miller	


Cognitive Models are… 



Can predict without implementing / prototype	

	


Don’t need to test with real users	

	


Theory has explanatory power	


	

Motivation: Provide a scientific foundation for design, like other 

engineering fields	


	


Adapted from Rob Miller	


Advantages 



Fitts’ Law - Predicts how long it will take a user to select a target; 

used for evaluating device input	


KLM (Keystroke-Level Model) - Description of user tasks based on 

low-level actions (keystrokes, etc.)	


GOMS (Goals, Operators, Methods, Selectors) - Higher-level then 

KLM, with structure and hierarchy	


Model Human Processor (MHP) - Model of human cognition 

underlying these theories	


	


Cognitive Theories in HCI 



Fitts’ Law 



Time depends on relative precision (d/s)	

	

Time is not limited by motor activity of moving your arm / hand, 

but rather by the cognitive activity of keeping on track	

	

In below example, time will be the same because the ratio d/s is 

the same	


	

	

	
 Target 1! Target 2!

Fitts’ Law Intuition 



Predicts movement time for selection	

	

Movement time for a rehearsed task	


–  Increases with distance to target (d)	

–  Decreases with width of target (s)	

–  Depends only on relative precision (d/s), assuming target is 

within arms reach	


First demonstrated for tapping with finger (Fitts 1954), later 
extrapolated to mouse and other input devices	


	


Adapted from Hearst, Newstetter, Martin	


Fitts’ Law 



Target 2!Target 1!

Target 2!Target 1!

Adapted from Hearst, Irani	


Fitts’ Law Examples 



Tmsec= a + b log2 (d/s + 1)	

	

a, b = empirically-derived constants	

d = distance, s = width of target	

ID (Index of Difficulty) = log2 (d/s + 1)	


	

	


Adapted from Robert Miller	
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s 

Fitts’Law Equation 



Conduct experiments varying d,s; but keeping everything else the 
same	


	

Measure execution time, error rate, accuracy	

	

Exclude erroneous trials	

	

Perform linear regression	


Adapted from Hearst, Irani	


Determining a,b Constants 



Microsoft Toolbars allow you to either keep or remove the labels 
under Toolbar buttons	


	

According to Fitts’ Law, which is more efficient?	


Adapted from Hearst, Irani	
Source: http://www.asktog.com/columns/022DesignedToGiveFitts.html	


Fitts in Practice 



You have a toolbar with 16 icons, each with 
dimensions of 16x16	


	

	

Without moving the array from the left edge of 

the screen, or changing the size of the icons, 
how can you make this more efficient? 	


Adapted from Hearst, Irani	


Fitts in Practice 



Answer: Line up all 16 icons on the  left hand edge of the 
screen	


	

Make sure that each button can be activated up to the last 

pixel on the left hand edge	

	

Why? Because you cannot move your mouse off of the 

screen, the effective width s is infinite	


Adapted from Hearst, Irani	


Fitts in Practice 



Adapted from Landay, Sinha, Klemmer	


Fitts in Practice 



Applies same principles to steering through a tunnel (Accot, Zhai 
1997)	


	

Must keep the pointer within the boundaries throughout, not only 

at the target	

	

Fitts‘ Law used for pointing, Steering Law used for drawing	


	


D 
S 

Steering Law 



Source: http://linuxbook.orbdesigns.com/ch09/btlb_c09.html	




Tmsec= a + b (d/s)	

	

a, b = empirically-derived constants	

d = distance, s = width of tunnel	

ID (Index of Difficulty) = (d/s)	

	

Index of Difficulty now linear, not logarithmic	

(i.e. steering is more difficult then pointing)	


Adapted from Robert Miller	


D 
S 

Steering Law Equation 



Keystroke-Level Model (KLM) 



Walk through a task, listing the actions needed to complete it	


	


Use heuristics to insert “thinking” operators (for example, place 

M’s in front of all P’s that select a command)  	


–  These can be different for different UI styles	


Based on estimates for each operator, calculate the amount of 

time required to complete the task	


	


	
 Adapted from Rob Miller	


Cognitive Analysis (KLM, GOMS, etc.) 



K 	
 	
Press a key or button	


P 	
 	
Point to a target on the display	


H	
 	
Home hands on input device	


D	
 	
Draw a line segment	


M	
 	
Mentally prepare for an action	


R 	
 	
(system response time)	


 KLM Operators 



Adapted from Lorin Hochstein	


 Example: Replacing a word 



Keystroke determined by typing speed	


	
0.28s for average typist (40 wpm), 0.08s for fast typist (155 

wpm), 1.20s for worst typist	


Pointing determined by Fitts’ Law (or general approximation)	


	
T = a + b log (d/s +1) OR	


	
T = 1.1s	


Drawing determined by Steering Law	


	
T = a + b (d/s)	


Adapted from Rob Miller	


 Operator Estimates 



Homing estimated by measurement	


	
T = 0.36s (between keyboard and mouse)	


	


Mental prep estimated by measurement	


	
T = 1.35s	


	
(estimated by taking the total task time, subtracting physical 

operator time, and dividing by the number of M operations)	


	


	


Adapted from Rob Miller	


 Operator Estimates 



Basic idea: Put an M before each step requiring access of a 

“chunk” from long-term memory	


Insert M’s before each sequence of Ks and P	


	
K -> MK; P -> MP	


Remove M’s in the middle of typing a word or string	


	
MKMKMK -> MKKK	


Delete M’s within repetitive composite actions (for example, point 

and click)	


	
MPMK -> MPK	


	


	

Adapted from Rob Miller	


Heuristics for adding M’s 



Using Shift-Click	


M	

P [start of word] 	
	

K [click]	

M	

P [end of word]	

K [shift]	

K [click]	

H [to keyboard]	

M	

K [Del]	


	

Total: 3M + 2P + 4K	


= 7.37 sec	


	


	


	


Adapted from Rob Miller	


Using Delete	


M	

P [start of word] 	
	


K [click]	


H	


M	


K [Del] x n [length of word]	

	


	


	


	


Total: 2M + P + H + (n+1) K	

= 4.44 + 0.28n sec	


	


	


	


Example: Deleting a word 



KLM can help evaluate UI designs, interaction methods and trade-

offs, using parametric analysis	


	


	


	


	


If common tasks take too long or consist of too many statements, 

can provide shortcuts	


Adapted from Rob Miller	


T 

n 

Del n times 

Shift-click 

Using KLM 



Source: Card, Moran and Newell, “The Keystroke Level Model for User Performance Time with Interactive Systems”	


Empirical Validation of KLM 



Only applies to expert users doing routine (well-learned) tasks	


Only predicts time; not error rate, memorizability, learnability, etc.	


Impractical for all but the simplest tasks	


Ignores	


–  Parallel processing, Multi-tasking	


–  Daydreaming	


–  Mental workload (working memory limits, fatigue)	


–  Planning and problem-solving (how to select a method?) 	
	


	


	
 Adapted from Rob Miller	


Limitation of KLM 



GOMS provides a higher-level language for task analysis and UI 

modeling	


Generates a set of quantitative and qualitative predictions based on 
description of the task and user interface	


Provides a hierarchy of goals and methods to achieve them	


Different GOMS variants use different terms, operate at various 
levels of abstraction, and make different simplifying assumptions	


	


GOMS 



Model Human Processor 





Model of human cognition useful for developing user interfaces	

	

Drew upon decades of prior psychology research	

	

Not an exact model of how the brain operates, but provides a 

useful approximation for understanding and estimating certain 
kinds of actions and reactions	


	

Organized similar to computer hardware and memory	


Model Human Processor 



Source: Card, Moran, Newell, The Psychology of Human-Computer Interaction	




Processors	

–  Perceptual	

–  Cognitive	

–  Motor	

	


Memories	

–  Sensory Image Store	

–  Working Memory	

–  Long-term Memory	

	


Principles of Operation	


	


Model Human Processor 



Perceptual	

–  Processes sensory input	


–  Populates sensory image store	

Motor	


–  Execute physical actions	


–  Operates on working memory	

Cognitive	


–  Connects perceptions to actions	

–  Operates on working and long-term memory	


Perceptual 
Processor 

Cognitive 
Processor 

Motor 
Processor 

Model Human Processor 



“The perceptual system consists of sensors and associated buffer 
memories…  The cognitive system receives symbolically coded 
information [from the perceptual system] in its working memory, 
and uses previously stored information from long-term memory 
to make decisions about how to respond.  The motor system 
carries out the response”	


Source: Card, Moran, Newell, The Psychology of Human-Computer Interaction   	


Model Human Processor 



Each processor has a cycle time	

	


Tp ~ 100ms [50-200 ms]	

–  Based on unit impulse response	


–  There is a quantum of experience	


–  Shorter for more intense stimuli	

Tm ~ 70ms [25-170 ms]	


–  Movement is also not continuous, but consists of a sequence 
of discrete movements (sometimes preprogrammed - talking, 
typing, etc.)	


Cycle time 



Tc ~ 70ms [30-100 ms]	

–  Based on recognize-act cycle	


–  Parallel recognition, serial action	

–  Can be shorter with lighter task / information loads, and 

practice	


	

 For each of the cycle times, there can be up to 10x difference 

between the fastest and slowest human beings - cycle times 
calculated both as nominal amounts and ranges	


Cycle time 



The time to do a task decreases with practice	

	

Tn = T1n-a	

	

Tn = time to do task on nth iteration	

T1 = time to do task on first iteration 	

A = constant (0.2 - 0.6)	

	

Applies only to skilled behavior, not to knowledge stored in long-

term memory	


Adapted from Robert Miller	


Power law of practice 



Properties of memories:	

–  Encoding: how things stored	


–  Size: number of things stored	


–  Decay time: how long memory lasts (measured as half-life)
	
	


Short-term 
Sensory Store 

Senses Working 
Memory 

Long-term 
Memory 

Adapted from Robert Miller	


Memories 



Visual information store	

–  encoded as physical image	


–  size ~ 17 [7-17] letters 	

–  decay ~ 200 ms [70-1000 ms]	


Auditory information store	


–  encoded as physical sound	

–  size ~ 5 [4.4-6.2] letters	


–  decay ~ 1500 ms [900-3500 ms]	

Perceptual memory fades before all of it can be coded and 

transferred to working memory	


Adapted from Robert Miller	


Sensory Image Store 



Two stimuli within the same PP cycle (Tp ~ 100ms) appear fused	

–  Intuition: will be in the same SIS frame	

	


Consequences	

–  1/ Tp frames/sec is enough to perceive a moving picture (10 

fps OK, 20 fps smooth)	

–  Computer response < Tp feels instantaneous	

–  Causality is strongly influenced by fusion	


	


Adapted from Robert Miller	


Perceptual Fusion 



“Chunk”: unit of perception or memory	

	


Chunking depends on presentation and what you already know 	


Adapted from Robert Miller	


Chunking 



M W R C A A O L I B M F B I B	






MWR CAA OLI BMF BIB	






BMW RCA AOL IBM FBI	






Holds intermediate products of thinking and coded representations 
produced by perceptual system	


	

–  encoded as acoustic or visual codes	

–  organized as “chunks” of information	

–  decay ~ 7s [5-226s]	

–  decay rate is dependent on the number of chunks being 

recalled 	

–  Maintenance rehearsal can keep chunks in working memory	

–  Interference between similarly coded (primarily acoustic) chunks 

can reduce chance of retrieval	

–  size ~ 7 [5-9] chunks	


Adapted from Robert Miller	


Working Memory 



Holds most of the user’s knowledge and experiences	

	

Network of inter-linked chunks, accessed associatively from 

working memory	

–  primarily encoded as semantic links	


–  decay ~ infinite	

–  size ~ infinite	


–  fast-read, slow-write	


Working on complicated tasks means less time for transferring from 
working memory to long-term memory	


Adapted from Robert Miller	


Long term memory 



Retrieval of LTM chunks is based on what other chunks it is 
associated with (retrieval cues)	


	


Elaborative rehearsal can create more links, increasing chances of 
retrieval	


	


Interference between similarly coded (semantically similar) can 
reduce chances of retrieval	


Retrieval from LTM 



Adapted from Landay, Sinha, Klemmer	




Response time RT increases with uncertainty about the judgment 
or decision to be made; proportionally to the information 
content of the stimuli	


	

For example, for n equally probably stimuli, each requiring a 

different response	

	

RT = c + d log2 (n + 1)	

	

Where c, d are constants	


Adapted from Robert Miller	


Uncertainty Principle 



For next time	


	


	


	
Keep working on functional prototype and 

experiment design	


	

Awesome guest lectures!	



