
i213 User Interface Design and Development	

	

Professor Tapan Parikh	

School of Information, UC Berkeley	

	

Cognitive approach to HCI attempts to predict user performance
based on a model of cognition	

	

Start with a model of how humans act	

	

Use that model to predict how humans would complete tasks using

a particular UI	

	

Provided theoretical foundation of HCI in the 1970s and 1980s	

	

Cognitive Modeling

Source: Stuart Card, Lecture on Human Information Interaction, 2007 	

Abstract	

Quantitative	

Approximate	

Estimated from experiments	

Based on a theory of cognition	

	

	

Adapted from Rob Miller	

Cognitive Models are…

Can predict without implementing / prototype	

	

Don’t need to test with real users	

	

Theory has explanatory power	

	

Motivation: Provide a scientific foundation for design, like other

engineering fields	

	

Adapted from Rob Miller	

Advantages

Fitts’ Law - Predicts how long it will take a user to select a target;

used for evaluating device input	

KLM (Keystroke-Level Model) - Description of user tasks based on

low-level actions (keystrokes, etc.)	

GOMS (Goals, Operators, Methods, Selectors) - Higher-level then

KLM, with structure and hierarchy	

Model Human Processor (MHP) - Model of human cognition

underlying these theories	

	

Cognitive Theories in HCI

Fitts’ Law

Time depends on relative precision (d/s)	

	

Time is not limited by motor activity of moving your arm / hand,

but rather by the cognitive activity of keeping on track	

	

In below example, time will be the same because the ratio d/s is

the same	

	

	

	
 Target 1! Target 2!

Fitts’ Law Intuition

Predicts movement time for selection	

	

Movement time for a rehearsed task	

–  Increases with distance to target (d)	

–  Decreases with width of target (s)	

–  Depends only on relative precision (d/s), assuming target is

within arms reach	

First demonstrated for tapping with finger (Fitts 1954), later
extrapolated to mouse and other input devices	

	

Adapted from Hearst, Newstetter, Martin	

Fitts’ Law

Target 2!Target 1!

Target 2!Target 1!

Adapted from Hearst, Irani	

Fitts’ Law Examples

Tmsec= a + b log2 (d/s + 1)	

	

a, b = empirically-derived constants	

d = distance, s = width of target	

ID (Index of Difficulty) = log2 (d/s + 1)	

	

	

Adapted from Robert Miller	

d

s

Fitts’Law Equation

Conduct experiments varying d,s; but keeping everything else the
same	

	

Measure execution time, error rate, accuracy	

	

Exclude erroneous trials	

	

Perform linear regression	

Adapted from Hearst, Irani	

Determining a,b Constants

Microsoft Toolbars allow you to either keep or remove the labels
under Toolbar buttons	

	

According to Fitts’ Law, which is more efficient?	

Adapted from Hearst, Irani	
Source: http://www.asktog.com/columns/022DesignedToGiveFitts.html	

Fitts in Practice

You have a toolbar with 16 icons, each with
dimensions of 16x16	

	

	

Without moving the array from the left edge of

the screen, or changing the size of the icons,
how can you make this more efficient? 	

Adapted from Hearst, Irani	

Fitts in Practice

Answer: Line up all 16 icons on the left hand edge of the
screen	

	

Make sure that each button can be activated up to the last

pixel on the left hand edge	

	

Why? Because you cannot move your mouse off of the

screen, the effective width s is infinite	

Adapted from Hearst, Irani	

Fitts in Practice

Adapted from Landay, Sinha, Klemmer	

Fitts in Practice

Applies same principles to steering through a tunnel (Accot, Zhai
1997)	

	

Must keep the pointer within the boundaries throughout, not only

at the target	

	

Fitts‘ Law used for pointing, Steering Law used for drawing	

	

D
S

Steering Law

Source: http://linuxbook.orbdesigns.com/ch09/btlb_c09.html	

Tmsec= a + b (d/s)	

	

a, b = empirically-derived constants	

d = distance, s = width of tunnel	

ID (Index of Difficulty) = (d/s)	

	

Index of Difficulty now linear, not logarithmic	

(i.e. steering is more difficult then pointing)	

Adapted from Robert Miller	

D
S

Steering Law Equation

Keystroke-Level Model (KLM)

Walk through a task, listing the actions needed to complete it	

	

Use heuristics to insert “thinking” operators (for example, place

M’s in front of all P’s that select a command) 	

–  These can be different for different UI styles	

Based on estimates for each operator, calculate the amount of

time required to complete the task	

	

	
 Adapted from Rob Miller	

Cognitive Analysis (KLM, GOMS, etc.)

K 	
 	
Press a key or button	

P 	
 	
Point to a target on the display	

H	
 	
Home hands on input device	

D	
 	
Draw a line segment	

M	
 	
Mentally prepare for an action	

R 	
 	
(system response time)	

 KLM Operators

Adapted from Lorin Hochstein	

 Example: Replacing a word

Keystroke determined by typing speed	

	
0.28s for average typist (40 wpm), 0.08s for fast typist (155

wpm), 1.20s for worst typist	

Pointing determined by Fitts’ Law (or general approximation)	

	
T = a + b log (d/s +1) OR	

	
T = 1.1s	

Drawing determined by Steering Law	

	
T = a + b (d/s)	

Adapted from Rob Miller	

 Operator Estimates

Homing estimated by measurement	

	
T = 0.36s (between keyboard and mouse)	

	

Mental prep estimated by measurement	

	
T = 1.35s	

	
(estimated by taking the total task time, subtracting physical

operator time, and dividing by the number of M operations)	

	

	

Adapted from Rob Miller	

 Operator Estimates

Basic idea: Put an M before each step requiring access of a

“chunk” from long-term memory	

Insert M’s before each sequence of Ks and P	

	
K -> MK; P -> MP	

Remove M’s in the middle of typing a word or string	

	
MKMKMK -> MKKK	

Delete M’s within repetitive composite actions (for example, point

and click)	

	
MPMK -> MPK	

	

	

Adapted from Rob Miller	

Heuristics for adding M’s

Using Shift-Click	

M	

P [start of word] 	
	

K [click]	

M	

P [end of word]	

K [shift]	

K [click]	

H [to keyboard]	

M	

K [Del]	

	

Total: 3M + 2P + 4K	

= 7.37 sec	

	

	

	

Adapted from Rob Miller	

Using Delete	

M	

P [start of word] 	
	

K [click]	

H	

M	

K [Del] x n [length of word]	

	

	

	

	

Total: 2M + P + H + (n+1) K	

= 4.44 + 0.28n sec	

	

	

	

Example: Deleting a word

KLM can help evaluate UI designs, interaction methods and trade-

offs, using parametric analysis	

	

	

	

	

If common tasks take too long or consist of too many statements,

can provide shortcuts	

Adapted from Rob Miller	

T

n

Del n times

Shift-click

Using KLM

Source: Card, Moran and Newell, “The Keystroke Level Model for User Performance Time with Interactive Systems”	

Empirical Validation of KLM

Only applies to expert users doing routine (well-learned) tasks	

Only predicts time; not error rate, memorizability, learnability, etc.	

Impractical for all but the simplest tasks	

Ignores	

–  Parallel processing, Multi-tasking	

–  Daydreaming	

–  Mental workload (working memory limits, fatigue)	

–  Planning and problem-solving (how to select a method?) 	
	

	

	
 Adapted from Rob Miller	

Limitation of KLM

GOMS provides a higher-level language for task analysis and UI

modeling	

Generates a set of quantitative and qualitative predictions based on
description of the task and user interface	

Provides a hierarchy of goals and methods to achieve them	

Different GOMS variants use different terms, operate at various
levels of abstraction, and make different simplifying assumptions	

	

GOMS

Model Human Processor

Model of human cognition useful for developing user interfaces	

	

Drew upon decades of prior psychology research	

	

Not an exact model of how the brain operates, but provides a

useful approximation for understanding and estimating certain
kinds of actions and reactions	

	

Organized similar to computer hardware and memory	

Model Human Processor

Source: Card, Moran, Newell, The Psychology of Human-Computer Interaction	

Processors	

–  Perceptual	

–  Cognitive	

–  Motor	

	

Memories	

–  Sensory Image Store	

–  Working Memory	

–  Long-term Memory	

	

Principles of Operation	

	

Model Human Processor

Perceptual	

–  Processes sensory input	

–  Populates sensory image store	

Motor	

–  Execute physical actions	

–  Operates on working memory	

Cognitive	

–  Connects perceptions to actions	

–  Operates on working and long-term memory	

Perceptual
Processor

Cognitive
Processor

Motor
Processor

Model Human Processor

“The perceptual system consists of sensors and associated buffer
memories… The cognitive system receives symbolically coded
information [from the perceptual system] in its working memory,
and uses previously stored information from long-term memory
to make decisions about how to respond. The motor system
carries out the response”	

Source: Card, Moran, Newell, The Psychology of Human-Computer Interaction 	

Model Human Processor

Each processor has a cycle time	

	

Tp ~ 100ms [50-200 ms]	

–  Based on unit impulse response	

–  There is a quantum of experience	

–  Shorter for more intense stimuli	

Tm ~ 70ms [25-170 ms]	

–  Movement is also not continuous, but consists of a sequence
of discrete movements (sometimes preprogrammed - talking,
typing, etc.)	

Cycle time

Tc ~ 70ms [30-100 ms]	

–  Based on recognize-act cycle	

–  Parallel recognition, serial action	

–  Can be shorter with lighter task / information loads, and

practice	

	

 For each of the cycle times, there can be up to 10x difference

between the fastest and slowest human beings - cycle times
calculated both as nominal amounts and ranges	

Cycle time

The time to do a task decreases with practice	

	

Tn = T1n-a	

	

Tn = time to do task on nth iteration	

T1 = time to do task on first iteration 	

A = constant (0.2 - 0.6)	

	

Applies only to skilled behavior, not to knowledge stored in long-

term memory	

Adapted from Robert Miller	

Power law of practice

Properties of memories:	

–  Encoding: how things stored	

–  Size: number of things stored	

–  Decay time: how long memory lasts (measured as half-life)
	
	

Short-term
Sensory Store

Senses Working
Memory

Long-term
Memory

Adapted from Robert Miller	

Memories

Visual information store	

–  encoded as physical image	

–  size ~ 17 [7-17] letters 	

–  decay ~ 200 ms [70-1000 ms]	

Auditory information store	

–  encoded as physical sound	

–  size ~ 5 [4.4-6.2] letters	

–  decay ~ 1500 ms [900-3500 ms]	

Perceptual memory fades before all of it can be coded and

transferred to working memory	

Adapted from Robert Miller	

Sensory Image Store

Two stimuli within the same PP cycle (Tp ~ 100ms) appear fused	

–  Intuition: will be in the same SIS frame	

	

Consequences	

–  1/ Tp frames/sec is enough to perceive a moving picture (10

fps OK, 20 fps smooth)	

–  Computer response < Tp feels instantaneous	

–  Causality is strongly influenced by fusion	

	

Adapted from Robert Miller	

Perceptual Fusion

“Chunk”: unit of perception or memory	

	

Chunking depends on presentation and what you already know 	

Adapted from Robert Miller	

Chunking

M W R C A A O L I B M F B I B	

MWR CAA OLI BMF BIB	

BMW RCA AOL IBM FBI	

Holds intermediate products of thinking and coded representations
produced by perceptual system	

	

–  encoded as acoustic or visual codes	

–  organized as “chunks” of information	

–  decay ~ 7s [5-226s]	

–  decay rate is dependent on the number of chunks being

recalled 	

–  Maintenance rehearsal can keep chunks in working memory	

–  Interference between similarly coded (primarily acoustic) chunks

can reduce chance of retrieval	

–  size ~ 7 [5-9] chunks	

Adapted from Robert Miller	

Working Memory

Holds most of the user’s knowledge and experiences	

	

Network of inter-linked chunks, accessed associatively from

working memory	

–  primarily encoded as semantic links	

–  decay ~ infinite	

–  size ~ infinite	

–  fast-read, slow-write	

Working on complicated tasks means less time for transferring from
working memory to long-term memory	

Adapted from Robert Miller	

Long term memory

Retrieval of LTM chunks is based on what other chunks it is
associated with (retrieval cues)	

	

Elaborative rehearsal can create more links, increasing chances of
retrieval	

	

Interference between similarly coded (semantically similar) can
reduce chances of retrieval	

Retrieval from LTM

Adapted from Landay, Sinha, Klemmer	

Response time RT increases with uncertainty about the judgment
or decision to be made; proportionally to the information
content of the stimuli	

	

For example, for n equally probably stimuli, each requiring a

different response	

	

RT = c + d log2 (n + 1)	

	

Where c, d are constants	

Adapted from Robert Miller	

Uncertainty Principle

For next time	

	

	

	
Keep working on functional prototype and

experiment design	

	

Awesome guest lectures!	

